Skip to main content

Shallow-Light Steiner Arborescences with Vertex Delays

  • Conference paper
Integer Programming and Combinatorial Optimization (IPCO 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7801))

Abstract

We consider the problem of constructing a Steiner arborescence broadcasting a signal from a root r to a set T of sinks in a metric space, with out-degrees of Steiner vertices restricted to 2. The arborescence must obey delay bounds for each r-t-path (t ∈ T), where the path delay is imposed by its total edge length and its inner vertices.

We want to minimize the total length. Computing such arborescences is a central step in timing optimization of VLSI design where the problem is known as the repeater tree problem [1,5]. We prove that there is no constant factor approximation algorithm unless \(\mbox{\slshape P}=\mbox{\slshape NP}\) and develop a bicriteria approximation algorithm trading off signal speed (shallowness) and total length (lightness). The latter generalizes results of [8,3], which do not consider vertex delays. Finally, we demonstrate that the new algorithm improves existing algorithms on real world VLSI instances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bartoschek, C., Held, S., Maßberg, J., Rautenbach, D., Vygen, J.: The Repeater Tree Construction Problem. Information Processing Letters 110, 1079–1083 (2010)

    Article  MathSciNet  Google Scholar 

  2. Cong, J., Kahng, A.B., Robins, G., Sarrafzadeh, M., Wong, C.K.: Provably good performance-driven global routing. IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems 11(6), 739–752 (1992)

    Article  Google Scholar 

  3. Elkin, M., Solomon, S.: Steiner Shallow-Light Trees are Exponentially Lighter than Spanning Ones. In: Proc. 52nd FOCS, pp. 373–382 (2011)

    Google Scholar 

  4. Gouveia, L., Simonetti, L., Uchoa, E.: Modeling hop-constrained and diameter-constrained minimum spanning tree problems as Steiner tree problems over layered graphs. Mathematical Programming A 128(1-2), 123–148 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hrkic, M., Lillis, J.: Generalized Buffer Insertion. In: Alpert, C., Sapatnekar, S., Mehta, D.D. (eds.) Handbook of Algorithms for VLSI Physical Design Automation, pp. 557–567. CRC Press (2007)

    Google Scholar 

  6. Huffman, D.A.: A Method for the Construction of Minimum-Redundancy Codes. In: Proc. of the IRE, vol. 40(9), pp. 1098–1101 (1952)

    Google Scholar 

  7. Hwang, F.K.: On steiner minimal trees with rectilinear distance. SIAM Journal of Applied Mathematics 30, 104–114 (1976)

    Article  MATH  Google Scholar 

  8. Khuller, S., Raghavachari, B., Young, N.: Balancing Minimum Spanning Trees and Shortest-Path Trees. Algorithmica 14, 305–321 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kraft, S.G.: A device for quantizing grouping and coding amplitude modulated pulses. Master’s thesis. MIT, Cambridge (1949)

    Google Scholar 

  10. Manyem, P., Stallmann, M.: Some Approximation Results in Multicasting. Working Paper, North Carolina State University (1996)

    Google Scholar 

  11. Rao, S., Sadayappan, P., Hwang, F.K., Shor, P.: The Rectilinear Steiner Arborescence Problem. Algorithmica 7, 277–288 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ruthmair, M., Raidl, G.R.: A Layered Graph Model and an Adaptive Layers Framework to Solve Delay-Constrained Minimum Tree Problems. In: Günlük, O., Woeginger, G.J. (eds.) IPCO 2011. LNCS, vol. 6655, pp. 376–388. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  13. Shi, W., Su, C.: The Rectilinear Steiner Arborescence Problem is NP-Complete. In: Proc. 11th ACM-SIAM Symp. on Discrete Algorithms, pp. 780–787 (2000)

    Google Scholar 

  14. Tovey, C.A.: A Simplified NP-Complete Satisfiability Problem. Discrete Applied Mathematics 8(1), 85–89 (1984)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Held, S., Rotter, D. (2013). Shallow-Light Steiner Arborescences with Vertex Delays. In: Goemans, M., Correa, J. (eds) Integer Programming and Combinatorial Optimization. IPCO 2013. Lecture Notes in Computer Science, vol 7801. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36694-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36694-9_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36693-2

  • Online ISBN: 978-3-642-36694-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics