Assessing the Classification of Liver Focal Lesions by Using Multi-phase Computer Tomography Scans

  • Auréline Quatrehomme
  • Ingrid Millet
  • Denis Hoa
  • Gérard Subsol
  • William Puech
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7723)

Abstract

In this paper, we propose a system for the automated classification of liver focal lesions of Computer Tomography (CT) images based on a multi-phase examination protocol. Many visual features are first extracted from the CT-scans and then labelled by a Support Vector Machine classifier. Our dataset contains 95 lesions from 5 types: cysts, adenomas, haemangiomas, hepatocellular carcinomas and metastasis. A Leave-One-Out cross-validation technique allows for classification evaluation. The multi-phase results are compared to the single-phase ones and show a significant improvement, in particular on hypervascular lesions.

Keywords

Medical Imaging Computer Aided Diagnosis Liver focal lesions Multi-Phase Computer Tomography Classification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Boll, D.T., Merkle, E.M.: Diffuse Liver Disease: Strategies for Hepatic CT and MR Imaging. RadioGraphics 29, 1591–1614 (2009)CrossRefGoogle Scholar
  2. 2.
    Xu, J., Faruque, J., Beaulieu, C.F., Rubin, D., Napel, S.: A Comprehensive Descriptor of Shape: Method and Application to Content-Based Retrieval of Similar Appearing Lesions in Medical Images. Journal of Digital Imaging, 1–8 (2011)Google Scholar
  3. 3.
    Napel, S., Beaulieu, C., Rodriguez, C., Cui, J., Xu, J., Gupta, A., Korenblum, D., Greenspan, H., Ma, Y., Rubin, D.: Automated retrieval of CT images of liver lesions on the basis of image similarity: method and preliminary results. Radiology 256 (1), 243–252 (2010)CrossRefGoogle Scholar
  4. 4.
    Mougiakakou, S., Valavanis, I., Nikita, A., Nikita, K.: Differential diagnosis of CT focal liver lesions using texture features, feature selection and ensemble driven classifiers. Artificial Intelligence in Medicine 41, 25–37 (2007)CrossRefGoogle Scholar
  5. 5.
    Duda, D., Kretowski, M., Bezy-Wendling, J.: Texture Characterization for Hepatic Tumor Recognition in Multiphase CT. Biocybernetics and Biomedical Engineering 26(4), 15–24 (2006)Google Scholar
  6. 6.
    Ye, J., Sun, Y., Wang, S.: Multi-Phase CT Image Based Hepatic Lesion Diagnosis by SVM. In: 2nd International Conference on Biomedical Engineering and Informatics, pp. 1–5 (2009)Google Scholar
  7. 7.
    Quatrehomme, A., Hoa, D., Subsol, G., Puech, W.: Review of Features Used in Recent Content-Based Radiology Image Retrieval Systems. In: Proceedings of the Third International Workshop on Image Analysis, pp. 105–113 (2010)Google Scholar
  8. 8.
    Deepa, S.N., Devi, B.A.: A survey on artificial intelligence approaches for medical image classification. Journal of Science and Technology 4(11), 1583–1595 (2011)Google Scholar
  9. 9.
    Unser, M.: Sum and Difference Histograms for Texture Classification. IEEE Transactions on Pattern Analysis and Machine Intelligence 8(1), 118–125 (1986)CrossRefGoogle Scholar
  10. 10.
    Laws, K.I.: Textured Image Segmentation. PhD thesis, University of Southern California (January 1980)Google Scholar
  11. 11.
    Witten, I.H., Frank, E., Hall, M.A.: CHAPTER 10 Introduction to Weka. In: Data Mining, 3rd edn., pp. 403–406. Morgan Kaufmann (2011)Google Scholar
  12. 12.
    Platt, J.: Fast Training of Support Vector Machines Using Sequential Minimal Optimization. In: Advances in Kernel Methods - Support Vector Learning. MIT Press (1998)Google Scholar
  13. 13.
    Nino-Murcia, M., Olcott, E., Jeffrey, R.J., Lamm, R., Beaulieu, C., Jain, K.: Focal liver lesions: pattern-based classification scheme for enhancement at arterial phase CT. Radiology 215, 746–751 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Auréline Quatrehomme
    • 1
    • 2
  • Ingrid Millet
    • 3
  • Denis Hoa
    • 1
  • Gérard Subsol
    • 2
  • William Puech
    • 2
  1. 1.IMAIOSMontpellierFrance
  2. 2.LIRMMUniversité Montpellier 2 / CNRSMontpellierFrance
  3. 3.Department of Medical ImagingCHU LapeyronieMontpellierFrance

Personalised recommendations