Advertisement

Skull Retrieval for Craniosynostosis Using Sparse Logistic Regression Models

  • Shulin Yang
  • Linda Shapiro
  • Michael Cunningham
  • Matthew Speltz
  • Craig Birgfeld
  • Indriyati Atmosukarto
  • Su-In Lee
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7723)

Abstract

Craniosynostosis is the premature fusion of the bones of the calvaria resulting in abnormal skull shapes that can be associated with increased intracranial pressure. While craniosynostoses of multiple different types can be easily diagnosed, quantifying the severity of the abnormality is much more subjective and not a standard part of clinical practice. For this purpose we have developed a severity-based retrieval system that uses a logistic regression approach to quantify the severity of the abnormality of each of three types of craniosynostoses. We compare several different sparse feature selection techniques: L 1 regularized logistic regression, fused lasso, and clustering lasso (cLasso). We evaluate our methodology in three ways: 1) for classification of normal vs. abnormal skulls, 2) for comparing pre-operative to post-operative skulls, and 3) for retrieving skulls in order of abnormality severity as compared with the ordering of a craniofacial expert.

Keywords

craniosynostosis cranial image (CI) L1 penalized logistic regression fused lasso clustering lasso (cLasso) sparse logistic regression model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yang, S., Shapiro, L., Cunningham, M., Speltz, M., Lee, S.-I.: Classification and Feature Selection for Craniosynostosis. In: Proceeding BCB 2011 Proceedings of the 2nd ACM Conference on Bioinformatics, Computational Biology and Biomedicine, pp. 340–344 (2011)Google Scholar
  2. 2.
    Tibshirani, R.: Regression Shrinkage and Selection Via the Lasso. Journal of the Royal Statistical Society 58(1), 267–288 (1996)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Shapiro, L., Wilamowska, K., Atmosukarto, I., Wu, J., Heike, C., Speltz, M., Cunningham, M.: Shape- Based Classification of 3D Head Data. In: ICIAP, pp. 692–700 (2009)Google Scholar
  4. 4.
    Lin, H., Ruiz-Correa, S., Sze, R., Cunningham, M., Speltz, M., Hing, A., Shapiro, L.: Efficient Symbolic Signatures for Classifying Craniosynostosis Skull Deformities. In: Workshop of ICCV, pp. 302–313 (2005)Google Scholar
  5. 5.
    Ruiz-Correa, S., Sze, R., Starr, J., Lin, H., Speltz, M., Cunningham, M., Hing, A.: New Scaphocephaly Severity Indices of Sagittal Craniosynostosis: A Comparative Study With Cranial Index Quantifications. Cleft Palate-Craniofacial Journal 43(2), 211–221 (2006)CrossRefGoogle Scholar
  6. 6.
    Lee, S.-I., Lee, H., Abbeel, P., Ng, A.: Efficient L1 Regularized Logistic Regression. In: Proceedings of the 21st National Conference on Artificial Intelligence (2006)Google Scholar
  7. 7.
    Slater, B., Lenton, K., Kwan, M., Gupta, D., Wan, D., Longaker, M.: Cranial sutures: a brief review. Plastic and Reconstructive Surgery 121(4), 170–178 (2008)CrossRefGoogle Scholar
  8. 8.
    Gray, H., Carter, H.: Gray’s Anatomy. Sterling Publishing (2000)Google Scholar
  9. 9.
    Tibshirani, R., Saunders, M., Rosset, S., Heights, Y., Zhu, J., Knight, K.: Sparsity and smoothness via the fused lasso. J. R. Statist. Soc. B. 67, 91–108 (2005)zbMATHCrossRefGoogle Scholar
  10. 10.
    Liu, J., Ji, S., Ye, J.: SLEP: Sparse Learning with Efficient Projections. Arizona State University (2009), http://www.public.asu.edu/~jye02/Software/SLEP
  11. 11.
    Starr, J., Kapp-Simon, K., Cloonan, Y., Collett, B., Cradock, M., Buono, L., Cunningham, M., Speltz, M.: Pre- and post-surgery neurodevelopment of infants with single-suture craniosynostosis: Comparison with controls. Journal of Neurosurgery (Pediatrics) 107(2), 103–110 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Shulin Yang
    • 1
  • Linda Shapiro
    • 1
  • Michael Cunningham
    • 2
  • Matthew Speltz
    • 2
  • Craig Birgfeld
    • 2
  • Indriyati Atmosukarto
    • 3
  • Su-In Lee
    • 1
  1. 1.Computer Science and EngineeringUniversity of WashingtonSeattleUSA
  2. 2.Seattle Children’s Research InstituteSeattleUSA
  3. 3.Advanced Digital Sciences CenterSingapore

Personalised recommendations