Skip to main content

Approximating Multivariable Functions by Feedforward Neural Nets

  • Chapter

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 49))

Abstract

Theoretical results on approximation of multivariable functions by feedforward neural networks are surveyed. Some proofs of universal approximation capabilities of networks with perceptrons and radial units are sketched. Major tools for estimation of rates of decrease of approximation errors with increasing model complexity are proven. Properties of best approximation are discussed. Recent results on dependence of model complexity on input dimension are presented and some cases when multivariable functions can be tractably approximated are described

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barron, A.R.: Neural net approximation. In: Narendra, K. (ed.) Proc. 7th Yale Workshop on Adaptive and Learning Systems, pp. 69–72. Yale University Press (1992)

    Google Scholar 

  2. Barron, A.R.: Universal approximation bounds for superpositions of a sigmoidal function. IEEE Trans. on Information Theory 39, 930–945 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bellman, R.: Dynamic Programming. Princeton University Press, Princeton (1957)

    MATH  Google Scholar 

  4. Bochner, S., Chandrasekharan, K.: Fourier Transform. Princeton University Press, Princeton (1949)

    Google Scholar 

  5. Braess, D.: Nonlinear Approximation Theory. Springer (1986)

    Google Scholar 

  6. Breiman, L.: Hinging hyperplanes for regression, classification and function approximation. IEEE Trans. Inform. Theory 39(3), 999–1013 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  7. Carrol, S.M., Dickinson, B.W.: Construction of neural nets using the Radon transform. In: Proc. the Int. Joint Conf. on Neural Networks, vol. 1, pp. 607–611 (1989)

    Google Scholar 

  8. Cheang, G.H.L., Barron, A.R.: A better approximation for balls. J. of Approximation Theory 104, 183–203 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chui, C.K., Li, X., Mhaskar, H.N.: Neural networks for localized approximation. Math. of Computation 63, 607–623 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Courant, R., Hilbert, D.: Methods of Mathematical Physics, vol. II. Interscience, New York (1962)

    MATH  Google Scholar 

  11. Cybenko, G.: Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals, and Systems 2, 303–314 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  12. Darken, C., Donahue, M., Gurvits, L., Sontag, E.: Rate of approximation results motivated by robust neural network learning. In: Proc. Sixth Annual ACM Conf. on Computational Learning Theory, pp. 303–309. ACM, New York (1993)

    Chapter  Google Scholar 

  13. DeVore, R.A., Howard, R., Micchelli, C.: Optimal nonlinear approximation. Manuscripta Mathematica 63, 469–478 (1989)

    Article  MathSciNet  Google Scholar 

  14. Donahue, M., Gurvits, L., Darken, C., Sontag, E.: Rates of convex approximation in non-Hilbert spaces. Constructive Approximation 13, 187–220 (1997)

    MathSciNet  MATH  Google Scholar 

  15. Girosi, F., Anzellotti, G.: Rates of convergence for Radial Basis Functions and neural networks. In: Mammone, R.J. (ed.) Artificial Neural Networks for Speech and Vision, pp. 97–113. Chapman & Hall (1993)

    Google Scholar 

  16. Girosi, F., Poggio, T.: Networks and the best approximation property. Biological Cybernetics 63, 169–176 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  17. Giulini, S., Sanguineti, M.: Approximation schemes for functional optimization problems. J. of Optimization Theory and Applications 140, 33–54 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gnecco, G., Sanguineti, M.: Estimates of variation with respect to a set and applications to optimization problems. J. of Optimization Theory and Applications 145, 53–75 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gnecco, G., Sanguineti, M.: On a variational norm tailored to variable-basis approximation schemes. IEEE Trans. on Information Theory 57, 549–558 (2011)

    Article  MathSciNet  Google Scholar 

  20. Gribonval, R., Vandergheynst, P.: On the exponential convergence of matching pursuits in quasi-incoherent dictionaries. IEEE Trans. on Information Theory 52, 255–261 (2006)

    Article  MathSciNet  Google Scholar 

  21. Gurvits, L., Koiran, P.: Approximation and learning of convex superpositions. J. of Computer and System Sciences 55, 161–170 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hartman, E.J., Keeler, J.D., Kowalski, J.M.: Layered neural networks with Gaussian hidden units as universal approximations. Neural Computation 2, 210–215 (1990)

    Article  Google Scholar 

  23. Hewit, E., Stromberg, K.: Abstract Analysis. Springer, Berlin (1965)

    Book  Google Scholar 

  24. Hornik, K., Stinchcombe, M., White, H.: Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks. Neural Networks 3, 551–560 (1990)

    Article  Google Scholar 

  25. Ito, Y.: Representation of functions by superpositions of a step or sigmoidal function and their applications to neural network theory. Neural Networks 4, 385–394 (1991)

    Article  Google Scholar 

  26. Ito, Y.: Finite mapping by neural networks and truth functions. Mathematical Scientist 17, 69–77 (1992)

    MathSciNet  MATH  Google Scholar 

  27. Jones, L.K.: A simple lemma on greedy approximation in Hilbert space and convergence rates for projection pursuit regression and neural network training. Annals of Statistics 20, 608–613 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  28. Juditsky, A., Hjalmarsson, H., Benveniste, A., Delyon, B., Ljung, L., Sjöberg, J., Zhang, Q.: Nonlinear black-box models in system identification: Mathematical foundations. Automatica 31, 1725–1750 (1995)

    Article  MATH  Google Scholar 

  29. Kainen, P.C., Kůrková, V.: Quasiorthogonal dimension of Euclidean spaces. Applied Mathematics Letters 6, 7–10 (1993)

    Article  MATH  Google Scholar 

  30. Kainen, P.C., Kůrková, V., Sanguineti, M.: Complexity of Gaussian radial basis networks approximating smooth functions. J. of Complexity 25, 63–74 (2009)

    Article  MATH  Google Scholar 

  31. Kainen, P.C., Kurkova, V., Sanguineti, M.: Dependence of Computational Models on Input Dimension: Tractability of Approximation and Optimization Tasks. IEEE Transactions on Information Theory 58, 1203–1214 (2012)

    Article  MathSciNet  Google Scholar 

  32. Kainen, P.C., Kůrková, V., Vogt, A.: Geometry and topology of continuous best and near best approximations. J. of Approximation Theory 105, 252–262 (2000)

    Article  MATH  Google Scholar 

  33. Kainen, P.C., Kůrková, V., Vogt, A.: Continuity of approximation by neural networks in L p -spaces. Annals of Operational Research 101, 143–147 (2001)

    Article  MATH  Google Scholar 

  34. Kainen, P.C., Kůrková, V., Vogt, A.: Best approximation by linear combinations of characteristic functions of half-spaces. J. of Approximation Theory 122, 151–159 (2003)

    Article  MATH  Google Scholar 

  35. Kainen, P.C., Kůrková, V., Vogt, A.: A Sobolev-type upper bound for rates of approximation by linear combinations of Heaviside plane waves. J. of Approximation Theory 147, 1–10 (2007)

    Article  MATH  Google Scholar 

  36. Knuth, D.E.: Big omicron and big omega and big theta. SIGACT News 8, 18–24 (1976)

    Article  Google Scholar 

  37. Kůrková, V.: Kolmogorov’s theorem and multilayer neural networks. Neural Networks 5, 501–506 (1992)

    Article  Google Scholar 

  38. Kůrková, V.: Approximation of functions by perceptron networks with bounded number of hidden units. Neural Networks 8, 745–750 (1995)

    Article  Google Scholar 

  39. Kůrková, V.: Dimension-independent rates of approximation by neural networks. In: Warwick, K., Kárný, M. (eds.) Computer-Intensive Methods in Control and Signal Processing. The Curse of Dimensionality, Birkhäuser, Boston, MA, pp. 261–270 (1997)

    Google Scholar 

  40. Kůrková, V.: Incremental approximation by neural networks. In: Warwick, K., Kárný, M., Kůrková, V. (eds.) Complexity: Neural Network Approach, pp. 177–188. Springer, London (1998)

    Google Scholar 

  41. Kůrková, V.: High-dimensional approximation and optimization by neural networks. In: Suykens, J., et al. (eds.) Advances in Learning Theory: Methods, Models and Applications, ch. 4, pp. 69–88. IOS Press, Amsterdam (2003)

    Google Scholar 

  42. Kůrková, V.: Minimization of error functionals over perceptron networks. Neural Computation 20, 252–270 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  43. Kůrková, V., Kainen, P.C., Kreinovich, V.: Estimates of the number of hidden units and variation with respect to half-spaces. Neural Networks 10, 1061–1068 (1997)

    Article  Google Scholar 

  44. Kůrková, V., Neruda, R.: Uniqueness of functional representations by Gaussian basis function networks. In: Proceedings of ICANN 1994, pp. 471–474. Springer, London (1994)

    Google Scholar 

  45. Kůrková, V., Sanguineti, M.: Bounds on rates of variable-basis and neural-network approximation. IEEE Trans. on Information Theory 47, 2659–2665 (2001)

    Article  MATH  Google Scholar 

  46. Kůrková, V., Sanguineti, M.: Comparison of worst case errors in linear and neural network approximation. IEEE Trans. on Information Theory 48, 264–275 (2002)

    Article  MATH  Google Scholar 

  47. Kůrková, V., Sanguineti, M.: Error estimates for approximate optimization by the extended Ritz method. SIAM J. on Optimization 15, 261–287 (2005)

    Google Scholar 

  48. Kůrková, V., Sanguineti, M.: Learning with generalization capability by kernel methods of bounded complexity. J. of Complexity 21, 350–367 (2005)

    Article  MATH  Google Scholar 

  49. Kůrková, V., Sanguineti, M.: Estimates of covering numbers of convex sets with slowly decaying orthogonal subsets. Discrete Applied Mathematics 155, 1930–1942 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  50. Kůrková, V., Sanguineti, M.: Approximate minimization of the regularized expected error over kernel models. Mathematics of Operations Research 33, 747–756 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  51. Kůrková, V., Sanguineti, M.: Geometric upper bounds on rates of variable-basis approximation. IEEE Trans. on Information Theory 54, 5681–5688 (2008)

    Article  Google Scholar 

  52. Kůrková, V., Savický, P., Hlaváčková, K.: Representations and rates of approximation of real–valued Boolean functions by neural networks. Neural Networks 11, 651–659 (1998)

    Article  Google Scholar 

  53. Lavretsky, E.: On the geometric convergence of neural approximations. IEEE Trans. on Neural Networks 13, 274–282 (2002)

    Article  Google Scholar 

  54. Leshno, M., Lin, V.Y., Pinkus, A., Schocken, S.: Multilayer feedforward networks with a nonpolynomial activation function can approximate any function. Neural Networks 6, 861–867 (1993)

    Article  Google Scholar 

  55. Makovoz, Y.: Random approximants and neural networks. J. of Approximation Theory 85, 98–109 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  56. Mhaskar, H.N.: Versatile Gaussian networks. In: Proc. of IEEE Workshop of Nonlinear Image Processing, pp. 70–73 (1995)

    Google Scholar 

  57. Mhaskar, H.N.: On the tractability of multivariate integration and approximation by neural networks. J. of Complexity 20, 561–590 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  58. Micchelli, C.A.: Interpolation of scattered data: Distance matrices and conditionally positive definite functions. Constructive Approximation 2, 11–22 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  59. Narendra, K.S., Mukhopadhyay, S.: Adaptive control using neural networks and approximate models. IEEE Trans. on Neural Networks 8, 475–485 (1997)

    Article  Google Scholar 

  60. Park, J., Sandberg, I.W.: Universal approximation using radial–basis–function networks. Neural Computation 3, 246–257 (1991)

    Article  Google Scholar 

  61. Park, J., Sandberg, I.W.: Approximation and radial-basis-function networks. Neural Computation 5, 305–316 (1993)

    Article  Google Scholar 

  62. Pinkus, A.: Approximation theory of the MLP model in neural networks. Acta Numerica 8, 143–195 (1999)

    Article  MathSciNet  Google Scholar 

  63. Pisier, G.: Remarques sur un résultat non publié de B. Maurey. In: Séminaire d’Analyse Fonctionnelle 1980-1981, Palaiseau, France. École Polytechnique, Centre de Mathématiques, vol. I(12) (1981)

    Google Scholar 

  64. Rosenblatt, F.: The perceptron: A probabilistic model for information storage and organization of the brain. Psychological Review 65, 386–408 (1958)

    Article  MathSciNet  Google Scholar 

  65. Rudin, W.: Principles of Mathematical Analysis. McGraw-Hill (1964)

    Google Scholar 

  66. Sejnowski, T.J., Rosenberg, C.: Parallel networks that learn to pronounce English text. Complex Systems 1, 145–168 (1987)

    MATH  Google Scholar 

  67. Singer, I.: Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces. Springer, Heidelberg (1970)

    MATH  Google Scholar 

  68. Smith, K.A.: Neural networks for combinatorial optimization: A review of more than a decade of research. INFORMS J. on Computing 11, 15–34 (1999)

    Article  MATH  Google Scholar 

  69. Stinchcombe, M., White, H.: Approximation and learning unknown mappings using multilayer feedforward networks with bounded weights. In: Proc. Int. Joint Conf. on Neural Networks IJCNN 1990, pp. III7–III16 (1990)

    Google Scholar 

  70. Traub, J.F., Werschulz, A.G.: Complexity and Information. Cambridge University Press (1999)

    Google Scholar 

  71. Wasilkowski, G.W., Woźniakowski, H.: Complexity of weighted approximation over ℝd. J. of Complexity 17, 722–740 (2001)

    Article  MATH  Google Scholar 

  72. Woźniakowski, H.: Tractability and strong tractability of linear multivariate problems. J. of Complexity 10, 96–128 (1994)

    Article  MATH  Google Scholar 

  73. Zemanian, A.H.: Distribution Theory and Transform Analysis. Dover, New York (1987)

    MATH  Google Scholar 

  74. Zoppoli, R., Parisini, T., Sanguineti, M., Baglietto, M.: Neural Approximations for Optimal Control and Decision. Springer, London (in preparation)

    Google Scholar 

  75. Zoppoli, R., Sanguineti, M., Parisini, T.: Approximating networks and extended Ritz method for the solution of functional optimization problems. J. of Optimization Theory and Applications 112, 403–439 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul C. Kainen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kainen, P.C., Kůrková, V., Sanguineti, M. (2013). Approximating Multivariable Functions by Feedforward Neural Nets. In: Bianchini, M., Maggini, M., Jain, L. (eds) Handbook on Neural Information Processing. Intelligent Systems Reference Library, vol 49. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36657-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36657-4_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36656-7

  • Online ISBN: 978-3-642-36657-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics