Skip to main content

A Survey of Feature Location Techniques

  • Chapter
  • First Online:
Domain Engineering

Abstract

Feature location techniques aim at locating software artifacts that implement a specific program functionality, a.k.a. a feature. These techniques support developers during various activities such as software maintenance, aspect- or feature-oriented refactoring, and others. For example, detecting artifacts that correspond to product line features can assist the transition from unstructured to systematic reuse approaches promoted by software product line engineering (SPLE). Managing features, as well as the traceability between these features and the artifacts that implement them, is an essential task of the SPLE domain engineering phase, during which the product line resources are specified, designed, and implemented. In this chapter, we provide an overview of existing feature location techniques. We describe their implementation strategies and exemplify the techniques on a realistic use-case. We also discuss their properties, strengths, and weaknesses and provide guidelines that can be used by practitioners when deciding which feature location technique to choose. Our survey shows that none of the existing feature location techniques are designed to consider families of related products and only treat different products of a product line as individual, unrelated entities. We thus discuss possible directions for leveraging SPLE architectures in order to improve the feature location process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://freemind.sourceforge.net.

  2. 2.

    We denote features by italic font, place natural language queries “in quotes,” and denote code elements by a monospaced font.

  3. 3.

    These are not to be confused with the extension and intension of a feature.

  4. 4.

    Several approaches, e.g., [4, 9], address the problem of input query definition. They consider not only the query but also related terms when evaluating the document models. As discussed earlier, these approaches are out of the scope of this chapter.

References

  1. Antoniol, G., Guéhéneuc, Y.G.: Feature identification: an epidemiological metaphor. IEEE TSE 32, 627–641 (2006)

    Google Scholar 

  2. Asadi, F., Di Penta, M., Antoniol, G., Guéhéneuc, Y.G.: A heuristic-based approach to identify concepts in execution traces. In: Proc. of CSMR’10, pp. 31–40, 2010

    Google Scholar 

  3. Baeza-Yates, R.A., Ribeiro-Neto, B.: Modern Information Retrieval. Addison-Wesley Longman, Boston (1999)

    Google Scholar 

  4. Bai, J., Song, D., Bruza, P., Nie, J.Y., Cao, G.: Query expansion using term relationships in language models for information retrieval. In: Proc. of CIKM’05, pp. 688–695, 2005

    Google Scholar 

  5. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. In: Proc. of WWW7, pp. 107–117, 1998

    Google Scholar 

  6. Brooks, F.P.  Jr.: No silver bullet essence and accidents of software engineering. IEEE Comput. 20, 10–19 (1987)

    Article  Google Scholar 

  7. Chen, A., Chou, E., Wong, J., Yao, A.Y., Zhang, Q., Zhang, S., Michail, A.: CVSSearch: Searching through source code using CVS comments. In: Proc. of ICSM’01, 2001

    Google Scholar 

  8. Chen, K., Rajlich, V.: Case study of feature location using dependence graph. In: Proc. of IWPC’00, pp. 241–249, 2000

    Google Scholar 

  9. Cleary, B., Exton, C., Buckley, J., English, M.: An empirical analysis of information retrieval based concept location techniques in software comprehension. J. Empir. Software Eng. 14, 93–130 (2009)

    Article  Google Scholar 

  10. Clements, P.C., Northrop, L.: Software Product Lines: Practices and Patterns. SEI Series in Software Engineering. Addison-Wesley Longman, Boston (2001)

    Google Scholar 

  11. Dit, B., Revelle, M., Gethers, M., Poshyvanyk, D.: Feature location in source code: a taxonomy and survey. J. Softw. Evol. Process 25(1), 53–95 (2013)

    Article  Google Scholar 

  12. Eaddy, M., Aho, A.V., Antoniol, G., Guéhéneuc, Y.G.: CERBERUS: Tracing requirements to source code using information retrieval, dynamic analysis, and program analysis. In: Proc. of ICPC’08, pp. 53–62, 2008

    Google Scholar 

  13. Edwards, D., Simmons, S., Wilde, N.: An approach to feature location in distributed systems. J. Syst. Software 79, 57–68 (2006)

    Article  Google Scholar 

  14. Eisenbarth, T., Koschke, R., Simon, D.: Locating features in source code. IEEE TSE 29, 210–224 (2003)

    Google Scholar 

  15. Eisenberg, A.D., De Volder, K.: Dynamic feature traces: finding features in unfamiliar code. In: Proc.of ICSM’05, pp. 337–346, 2005

    Google Scholar 

  16. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, New York (1999)

    Book  MATH  Google Scholar 

  17. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Longman, Boston (1989)

    MATH  Google Scholar 

  18. Hill, E., Pollock, L., Vijay-Shanker, K.: Exploring the neighborhood with dora to expedite software maintenance. In: Proc. of ASE’07, pp. 14–23, 2007

    Google Scholar 

  19. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. ACM 46, 604–632 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. Koschke, R., Quante, J.: On dynamic feature location. In: Proc. of ASE’05, 2005

    Google Scholar 

  21. Landauer, T.K., Foltz, P.W., Laham, D.: An introduction to latent semantic analysis. Discourse Process. 25(2–3), 259–284 (1998)

    Article  Google Scholar 

  22. Liu, D., Marcus, A., Poshyvanyk, D., Rajlich, V.: Feature location via information retrieval based filtering of a single scenario execution trace. In: Proc. of ASE’07, 2007

    Google Scholar 

  23. Marcus, A.: Semantic-driven program analysis. In: Proc. of ICSM’04, pp. 469–473, 2004

    Google Scholar 

  24. Marcus, A., Sergeyev, A., Rajlich, V., Maletic, J.I.: An information retrieval approach to concept location in source code. In: Proc. of WCRE’04, pp. 214–223, 2004

    Google Scholar 

  25. Pohl, K., Boeckle, G., van der Linden, F.: Software Product Line Engineering: Foundations, Principles, and Techniques. Springer, New York (2005)

    Google Scholar 

  26. Poshyvanyk, D., Marcus, A.: Combining formal concept analysis with information retrieval for concept location in source code. In: Proc. of ICPC’07, pp. 37–48, 2007

    Google Scholar 

  27. Poshyvanyk, D., Gueheneuc, Y.G., Marcus, A., Antoniol, G., Rajlich, V.: Feature location using probabilistic ranking of methods based on execution scenarios and information retrieval. IEEE TSE 33, 420–432 (2007)

    Google Scholar 

  28. Qin, T., Zhang, L., Zhou, Z., Hao, D., Sun, J.: Discovering use cases from source code using the branch-reserving call graph. In: Proc. of APSEC’03, pp. 60–67, 2003

    Google Scholar 

  29. Revelle, M., Dit, B., Poshyvanyk, D.: Using data fusion and web mining to support feature location in software. In: Proc. of ICPC’10, pp. 14–23, 2010

    Google Scholar 

  30. Robillard, M.P.: Automatic generation of suggestions for program investigation. In: Proc. of ESEC/FSE-13, pp. 11–20, 2005

    Google Scholar 

  31. Robillard, M.P., Dagenais, B.: Retrieving task-related clusters from change history. In: Proc. of WCRE’08, pp. 17–26, 2008

    Google Scholar 

  32. Robillard, M.P., Shepherd, D., Hill, E., Vijay-Shanker, K., Pollock, L.: An empirical study of the concept assignment problem. Tech. Rep. SOCS -TR-2007.3, School of Computer Science, McGill University (2007)

    Google Scholar 

  33. Rohatgi, A., Hamou-Lhadj, A., Rilling, J.: An approach for mapping features to code based on static and dynamic analysis. In: Proc. of ICPC’08, pp. 236–241, 2008

    Google Scholar 

  34. Rubin, J., Chechik, M.: Locating distinguishing features using diff sets. In: Proc. of ASE’12, pp. 242–245, 2012

    Google Scholar 

  35. Saul, Z.M., Filkov, V., Devanbu, P., Bird, C.: Recommending random walks. In: Proc. of FSE’07, pp. 15–24, 2007

    Google Scholar 

  36. Shao, P., Smith, R.K.: Feature location by IR modules and call graph. In: Proc. of ACM-SE 47, pp. 70:1–70:4, 2009

    Google Scholar 

  37. Shepherd, D., Pollock, L., Vijay-Shanker, K.: Towards supporting on-demand virtual remodularization using program graphs. In: Proc. of AOSD’06, pp. 3–14, 2006

    Google Scholar 

  38. Shepherd, D., Fry, Z.P., Hill, E., Pollock, L., Vijay-Shanker, K.: Using natural language program analysis to locate and understand action-oriented concerns. In: Proc. of AOSD’07, pp. 212–224, 2007

    Google Scholar 

  39. Tip, F.: A survey of program slicing techniques. J. Prog. Lang. 3(3), 121–189 (1995)

    Google Scholar 

  40. Trifu, M.: Improving the dataflow-based concern identification approach. In: Proc. of CSMR’09, pp. 109–118, 2009

    Google Scholar 

  41. Walkinshaw, N., Roper, M., Wood, M.: Feature location and extraction using landmarks and barriers. In: Proc. of ICSM’07, pp. 54–63, 2007

    Google Scholar 

  42. Wilde, N., Scully, M.C.: Software reconnaissance: mapping program features to code. J. Software Mainten. 7, 49–62 (1995)

    Article  Google Scholar 

  43. Wong, W.E., Horgan, J.R., Gokhale, S.S., Trivedi, K.S.: Locating program features using execution slices. In: Proc. of ASSET’99, pp. 194–203, 1999

    Google Scholar 

  44. Zhao, W., Zhang, L., Liu, Y., Sun, J., Yang, F.: SNIAFL: towards a static noninteractive approach to feature location. ACM TOSEM 15, 195–226 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Rubin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rubin, J., Chechik, M. (2013). A Survey of Feature Location Techniques. In: Reinhartz-Berger, I., Sturm, A., Clark, T., Cohen, S., Bettin, J. (eds) Domain Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36654-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36654-3_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36653-6

  • Online ISBN: 978-3-642-36654-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics