Emerging Phenomena During Driving Interactions

  • Christian MaagEmail author
Part of the Understanding Complex Systems book series (UCS)


AmI technology is able to help people in many areas of life. Concerning car driving, advanced driver assistance systems (ADAS) deliver information, give recommendations, and assist drivers. These new technologies have to be analysed carefully, in order to optimize usability, road safety, efficiency, and emotional climate.

The chapter describes potential emerging effects of future ADAS (e.g. Efficient Cruise Control) on driver behaviour (including cognitive-emotional mechanisms) by experimental studies using driving simulators. Besides individual level effects, the chapter focusses on group level effects and shows a way how effects on system level (e.g. traffic flow) can be investigated.


Time Headway Ambient Intelligence Lane Change Driving Simulator Emotional Climate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Maag, C.: Fahrer und Verkehrsklima – Eine wissenschaftliche Untersuchung zu den Ursachen und Folgen von Emotionen im Straßenverkehr. In: Reihe 22: Mensch-Maschine-Systeme (VDI-Fortschritt-Bericht, Nr. 18). VDI-Verlag, Düsseldorf (2004)Google Scholar
  2. 2.
    Benmimoun, A., Neunzig, D., Maag, C.: Effizienzsteigerung durch professionelles/partnerschaftliches Verhalten im Straßenverkehr. FAT-Schriftenreihe Nr. 181. Frankfurt/Main: Forschungsvereinigung Automobiltechnik e.V. (2004)Google Scholar
  3. 3.
    Maag, C., Mühlbacher, D., Mark, C., Krüger, H.-P.: Studying effects of Advanced Driver Assistance Systems (ADAS) on individual and group level using multi-driver simulation. Paper is selected for IEEE Intelligent Transportation Systems Magazine. 4, 45–54 (2012)Google Scholar
  4. 4.
    Muehlbacher, D., Zimmer, J., Fischer, F., Krueger, H.-P.: The multi-driver simulator – a new concept of driving simulation for the analysis of interactions between several drivers. In: de Waard, D., Onnasch, L., Wiczorek, R., Manzey, D. (eds.) Human Centred Automation, pp. 147–158. Shaker, Maastricht (2011)Google Scholar
  5. 5.
    Orwat, C., Graefe, A., Faulwasser, T.: Towards pervasive computing in health care – a literature review. BMC Med. Informatics Decis. Making 8, 26 (2008)CrossRefGoogle Scholar
  6. 6.
    Cook, D.J., Augusto, J.C., Jakkula, V.R.: Ambient intelligence: technologies, applications, and opportunities. Pervasive Mobile Comput. 5, 277–298 (2009)CrossRefGoogle Scholar
  7. 7.
    Sharpansky, A., Treur, J.: A computational model for behavioural monitoring and cognitive analysis using cognitive models. In: Howes, A., Peebles, D., Cooper, R. (eds.) 9th International Conference on Cognitive Modeling – ICCM2009, Manchester (2009)Google Scholar
  8. 8.
    Muenchner, Kreis., EICT, Deutsche Telekom, TNS Infratest: Zukunft und Zukunftsfähigkeit der Informations- und Kommunikationstechnologien und Medien: Internationale Delphi Studie 2030. Bundesministerium für Wirtschaft und Technologie (2009)Google Scholar
  9. 9.
    Freyman, R.: Möglichkeit und Grenzen von Fahrerassistenz- und Aktiven Sicherheitssystemen. Aktive Sicherheit durch Fahrerassistenz, Garching bei München. (2004)Google Scholar
  10. 10.
    Parasuraman, R., Sheridan, T.B., Wickens, C.D.: A model for types and levels of human interaction with automation. IEEE Trans. Syst. Man Cybern. A Syst. Hum. 30, 286–297 (2000)CrossRefGoogle Scholar
  11. 11.
    Wiltschko, T.: Mikroskopische Unfallanalyse zur Identifikation von Wirkungs-feldern zukünftiger Fahrerassistenzsysteme. Tagungsband zu den 19. Verkehrswissenschaftliche Tage in Dresden, 22. und 23, pp. 107.1–107.17, Sept 2003Google Scholar
  12. 12.
    Benmimoun, A.: Der Fahrer als Vorbild für Fahrerassistenzsysteme? Ein fahrermodell-basierter Ansatz zur Entwicklung von situationsadaptiven FAS. 13. Aachener Kolloquium, Aachen, 04–06 Oct 2004Google Scholar
  13. 13.
    Bainbridge, L.: Ironies of automation. Automatica 19, 2–27 (1983)CrossRefGoogle Scholar
  14. 14.
    Endsley, M.R.: Toward a theory of situation awareness in dynamic systems. Hum. Factors 37(1), 32–64 (1995)CrossRefGoogle Scholar
  15. 15.
    Hassenzahl, M.: The interplay of beauty, goodness and usability in interactive products. Hum. Comput. Interact. 19, 319–349 (2004)CrossRefGoogle Scholar
  16. 16.
    Hoffmann, S., Buld, S.: Darstellung und Evaluation eines Trainings zum Fahren in der Fahrsimulation. In: Integrierte Sicherheit und Fahrerassistenzsysteme, VDI-Gesellschaft Fahrzeug- und Verkehrstechnik, pp. 113–132. VDI-Verlag, Düsseldorf (2006)Google Scholar
  17. 17.
    Brookhuis, K., De Waard, D., Mulder, B.: Measuring driving performance by car-following in traffic. Ergonomics 37(3), 427–434 (1994)CrossRefGoogle Scholar
  18. 18.
    Dastrup, E., Lees, M., Bechara, A., Dawson, J., Rizzo, M.: Risky car following in abstinent users of MDMA. Accid. Anal. Prev. 42(3), 867–873 (2010)CrossRefGoogle Scholar
  19. 19.
    Venhovens, P., Naab, K., Adiprasito, B.: Stop and go cruise control. Seoul 2000 FISITA World Automotive Congress, Seoul, Korea, 12–15 June 2000Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Center for Traffic Sciences, Institute for Psychology IIIUniversity WuerzburgWürzburgGermany

Personalised recommendations