Enhancing Crowd Evacuation and Traffic Management Through AmI Technologies: A Review of the Literature

  • Eve Mitleton-KellyEmail author
  • Ivan Deschenaux
  • Christian Maag
  • Matthew Fullerton
  • Nihan Celikkaya
Part of the Understanding Complex Systems book series (UCS)


This document is a review of the burgeoning literature on the utilisation of AmI (Ambient Intelligence) technology in two contexts: providing support and enhancing crowd evacuation during emergencies and improving traffic management.


SOCIONICAL Partner Intelligent Transportation System Adaptive Cruise Control Advance Driver Assistance System Crowd Behaviour 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Aarts, E., Grotenhuis, F.: Ambient intelligence 2.0: towards synergetic prosperity. J. Ambient Intell. Smart Environ. 3, 3–11 (2011)Google Scholar
  2. 2.
    Aarts, E., de Ruyter, B.: New research perspectives on ambient intelligence. J. Ambient Intell. Smart Environ. 1, 5–14 (2009)Google Scholar
  3. 3.
    Abascal, J.: Ambient intelligence for people with disabilities and elderly people. In: ACM’s special interest group on computer-human interaction (SIGCHI), ambient intelligence for scientific discovery (AISD) workshop, Vienna (2004)., Accessed 5 Apr 2013
  4. 4.
    Abowd, G.D., Dey, A.K., Brown, P.J., et al.: Towards a better understanding of context and context-awareness. Handheld Ubiquitous Comput. 1707/1999, 304–307 (1999)Google Scholar
  5. 5.
    Ali, S., Shah, M.: A Lagrangian particle dynamics approach for crowd flow segmentation and stability analysis. In: IEEE conference on computer vision and pattern recognition (CVPR&07), IEEE, Minneapolis (2007)Google Scholar
  6. 6.
    Andrade, E.L., Blunsden, S., Fisher, R.B.: Modelling crowd scenes for event detection. In: 18th international conference on pattern recognition (ICPR 2006), Vol. 1. IEEE, Hong Kong (2006)Google Scholar
  7. 7.
    Andrade, E.L., Fisher, R.B.: Simulation of crowd problems for computer vision. In: First international workshop on crowd simulation (V-CROWDS&05), Vol. 3, Lausanne (2005)Google Scholar
  8. 8.
    Augusto, J.-C., Nakashima, H., Aghajan, H.: Ambient intelligence and smart environments: a state of the art. J. Ambient Intell. Smart 1, 3–31 (2010)Google Scholar
  9. 9.
    Bainbridge, L.: Ironies of automation. Automatica 19, 2–27 (1983)CrossRefGoogle Scholar
  10. 10.
    Baur, M., Fullerton, M., Busch, F.: Realizing an effective and flexible ITS evaluation strategy through modular and multi-scaled traffic simulation. IEEE Intell. Transport. Syst. Mag. 2, 34–42 (2010)Google Scholar
  11. 11.
    Benmimoun, A.: Der Fahrer als Vorbild für Fahrerassistenzsysteme? Ein fahrermodell-basierter Ansatz zur Entwicklung von situationsadaptiven FAS. 13. Aachener Kolloquium, Aachen, 04.-06.10.2004 (2004)Google Scholar
  12. 12.
    Blaschke, T., Hay, G.J., Weng, Q., Resch, B.: Collective sensing: integrating geospatial technologies to understand urban systems—an overview. Remot. Sens. 3, 1743–1776 (2011)CrossRefGoogle Scholar
  13. 13.
    Boghossian, B.A., Velastin, S.A.: Motion-based machine vision techniques for the management of large crowds. In: The 6th IEEE international conference on electronics, circuits and systems, Proceedings of ICECS&99, Vol. 2. IEEE, Pafos (1999)Google Scholar
  14. 14.
    Bolla, R., Davoli, F.; Road traffic estimation from location tracking data in the mobile cellular network. In: 2000 I.E. Wireless Communications and Networking Conference. Conference Record (Cat. No.00TH8540), pp. 1107–1112. IEEE (2000)Google Scholar
  15. 15.
    Böhlen, M., Frei, H.: Ambient intelligence in the city overview and new perspectives. In: Nakashima, H., Aghajan, H., Augusto, J.C. (eds.) Handbook of ambient intelligence and smart environment, pp. 911–938. Springer, Boston (2010)CrossRefGoogle Scholar
  16. 16.
    Calabrese, F., Colonna, M., Lovisolo, P., Parata, D., Ratti, C.: Real-time urban monitoring using cell phones: a case study in Rome. IEEE Trans. Intell. Transp. Syst. 12, 141–151. Chicago, IL (2011)CrossRefGoogle Scholar
  17. 17.
    Calabrese, F., Ratti, C.: Real time Rome. Netw. Commun. Stud. 3–4, 247–258 (2006)Google Scholar
  18. 18.
    Cheriyadat, A., Radke, R.: Detecting dominant motions in dense crowds. IEEE J. Sel. Topics Signal Process. 2, 568–581 (2008)CrossRefGoogle Scholar
  19. 19.
    Cook, D.: Ambient intelligence: technologies, applications, and opportunities. Pervasive Mobile Comput. 5, 277–298 (2009)CrossRefGoogle Scholar
  20. 20.
    Cook, D.J., Das, S.K.: How smart are our environments? An updated look at the state of the art. Pervasive Mobile Comput. 3, 53–73 (2007)CrossRefGoogle Scholar
  21. 21.
    Cook, D.J., Das, S.K.: Pervasive computing at scale: transforming the state of the art. Pervasive Mobile Comput. 8, 22–35 (2012)CrossRefGoogle Scholar
  22. 22.
    Cooper, A.K., Ittmann, H.W., Stylianides, T., Schmitz, P.M.U.: Ethical issues in tracking cellular telephones at an event. Omega 37, 1063–1072 (2009)CrossRefGoogle Scholar
  23. 23.
    Dia, H., Panwai, S.: Modelling drivers’ compliance and route choice behaviour in response to travel information. Nonlinear Dynam. 49(4), 493–509 (2007)zbMATHCrossRefGoogle Scholar
  24. 24.
    Endsley, M.R.: Toward a theory of situation awareness in dynamic systems. Hum. Fact. 37(1), 32–64 (1995)CrossRefGoogle Scholar
  25. 25.
    Ferscha, A., Emsenhuber, B., Riener, A., Holzmann, C., Hechinger, M., Hochreiter, D., Franz, M., Zeidler, A., dos Santos Rocha, M., Klein, C.: Vibro-tactile space-awareness. In: Adjunct proceedings – Ubicomp (2008).Google Scholar
  26. 26.
    Ferscha, A., Zia, K.: Lifebelt: silent directional guidance for crowd evacuation. In: International symposium on wearable computers (ISWC’09), IEEE, Linz (2009)Google Scholar
  27. 27.
    Ferscha, A., Zia, K.: LifeBelt: crowd evacuation based on vibro-tactile guidance. IEEE Pervasive Comput. 9, 33–42 (2010)CrossRefGoogle Scholar
  28. 28.
    Ferscha, A., Zia, K., Riener, A., Sharpanskykh, A.: Potential of social modelling in socio-technical systems. Procedia Comput. Sci. 7, 235–237 (2011)CrossRefGoogle Scholar
  29. 29.
    Franklin, D., Flachsbart, J., Hammond, K.: The intelligent classroom. IEEE Intell. Syst. 14, 2–5 (1999)CrossRefGoogle Scholar
  30. 30.
    Gawronski, P., Kułakowski, K., Kämpf, M., Kantelhardt, J.W.: Evacuation in the social force model is not stationary. Acta Phys. Pol. A 121, 7 (2011)Google Scholar
  31. 31.
    Gawronski, P., Kułakowski, K.: Crowd dynamics – being stuck. Comput. Phys. Commun. 182, 1924–1927 (2011)CrossRefGoogle Scholar
  32. 32.
    Gerritsen, C.: Using ambient intelligence to control aggression in crowds. In: 2011 IEEE/WIC/ACM international conference on web intelligence and intelligent agent technology (WI-IAT), Vol. 3. IEEE, Lyon (2011)Google Scholar
  33. 33.
    Gershenfeld, N., Krikorian, R., Cohen, D.: The internet of things. Sci. Am. 291, 76–81 (2004)CrossRefGoogle Scholar
  34. 34.
    Gilbert, N.: Agent-Based Models. Sage, London (2007)Google Scholar
  35. 35.
    Hassenzahl, M.: The interplay of beauty, goodness and usability in interactive products. Hum. Comput. Interact. 19, 319–349 (2004)CrossRefGoogle Scholar
  36. 36.
    Helbing, D., Molnár, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51, 4282–4286 (1995)CrossRefGoogle Scholar
  37. 37.
    Herring, R., et al.: Using mobile phones to forecast arterial traffic through statistical learning. In: 89th transportation research board annual meeting, Washington, DC (2010)Google Scholar
  38. 38.
    Hollands, R.G.: Will the real smart city please stand up? City 12, 303–320 (2008)CrossRefGoogle Scholar
  39. 39.
    Huuskonen, P.: Run to the hills! Ubiquitous computing meltdown. In: Augusto, J.-C., Shapiro, D. (eds.) Advances in Ambient Intelligence, pp. 157–172. Ios Press, Amsterdam (2007)Google Scholar
  40. 40.
  41. 41.
    Jarostaw Was, B.G., Matuszyk, P.J.: Social distances model of pedestrian dynamics. Lect. Notes Comput. Sci. 4173, 492–501 (2006)CrossRefGoogle Scholar
  42. 42.
    Jung, C.R., et al.: Detection of unusual motion using computer vision. In: 19th Brazilian symposium on computer graphics and image processing (SIBGRAPI&06), IEEE, Manaus (2006)Google Scholar
  43. 43.
    Kratz, L., Nishino, K.: Anomaly detection in extremely crowded scenes using spatio-temporal motion pattern models. In: IEEE conference on computer vision and pattern recognition (CVPR 2009), IEEE, Miami (2009)Google Scholar
  44. 44.
    Lei, W., Li, A., Gao, R., Hao, X., Deng, B.: Simulation of pedestrian crowds’ evacuation in a huge transit terminal subway station. Phys. A. Stat. Mech. Appl. 391, 5355–5365 (2012). (Available on-line:
  45. 45.
    Lorincz, K., Malan, D.J., Fulford-Jones, T.R.F., et al.: Sensor networks for emergency response: challenges and opportunities. IEEE Pervasive Comput. 3, 16–23 (2004)CrossRefGoogle Scholar
  46. 46.
    Lu, M., Wevers, K., Van Der Heijden, R.: Technical feasibility of advanced driver assistance systems (ADAS) for road traffic safety. Transp. Plan. Technol. 28(3), 167–187 (2005)CrossRefGoogle Scholar
  47. 47.
    Lukowicz, P., Pentland, S., Ferscha, A.: From context awareness to socially aware computing. IEEE Pervasive Comput. 11, 32–41 (2012)CrossRefGoogle Scholar
  48. 48.
    Ma, R., et al.: On pixel count based crowd density estimation for visual surveillance. In: 2004 IEEE conference on cybernetics and intelligent systems, Vol. 1, IEEE (2004)Google Scholar
  49. 49.
    Malinowski, J., Kułakowski, K.: Deterministic ants in labirynth – information gained by map sharing. arXiv preprint arXiv:1206.2460 (2012). Accessed 5 Apr 2013
  50. 50.
    Marsden, G., Mcdonald, M., Brackstone, M.: Towards an understanding of adaptive cruise control. Transport. Res. Part C 9(1), 33–51 (2001)CrossRefGoogle Scholar
  51. 51.
    Mehran, R., Oyama, A., Shah, M.: Abnormal crowd behavior detection using social force model. In: IEEE conference on computer vision and pattern recognition (CVPR 2009), IEEE, Miami (2009)Google Scholar
  52. 52.
    Miles, J.C., Chen, K. (eds.): PIARC ITS Handbook, route2market, second edition, (2008)Google Scholar
  53. 53.
    Miyoshi, T., Nakayasu, H., Ueno, Y., Patterson, P.: An emergency aircraft evacuation simulation considering passenger emotions. Comput. Ind. Eng. 62, 746–754 (2012). (Available on-line: Scholar
  54. 54.
    Morrison, A., Bell, M., Chalmers, M.: Visualisation of spectator activity at stadium events. In: 2009 13th international conference on information visualisation, IEEE, Barcelona (2009)Google Scholar
  55. 55.
    Nakasima, I., Aghajan, H., Augusto, J.-C.: In: Nakashima, H., Aghajan, H., Augusto, J.C. (eds.) Handbook of Ambient Intelligence and Smart Environments. Springer, Boston (2010)CrossRefGoogle Scholar
  56. 56.
    Ndiaye, A., Gebhard, P., Kipp, M., et al.: Ambient intelligence in edutainment: tangible interaction with life-like exhibit guides. Lect. Notes Comput. Sci. 3814, 104–113 (2005)CrossRefGoogle Scholar
  57. 57.
    Norman, D.: The Invisible Computer: Why Good Products Can Fail, the Personal Computer Is So Complex, and Information Appliances Are the Solution. The MIT Press, Cambridge (1999)Google Scholar
  58. 58.
    Olaru, A., Gratie, C.: Agent-based, context-aware information sharing for ambient intelligence. Int. J. Artif. Int. Tools 20, 985–1000 (2011)CrossRefGoogle Scholar
  59. 59.
    Pan, X., Han, C.S., Dauber, K., Law, K.H.: A multi-agent based framework for the simulation of human and social behaviors during emergency evacuations. AI Soc. 22, 113–132 (2007)CrossRefGoogle Scholar
  60. 60.
    Parasuraman, R., Sheridan, T.B., Wickens, C.D.: A model for types and levels of human interaction with automation. IEEE Trans. Syst. Man Cybern.Part A Syst.Hum. 30, 286–297 (2000)CrossRefGoogle Scholar
  61. 61.
    Pollack, M.E.: Intelligent technology for an aging population: the use of AI to assist elders with cognitive impairment. AI Mag. 26, 9–24 (2005)Google Scholar
  62. 62.
    Ramos, C., Marreiros, G., Santos, R., Freitas, C.F.: Smart offices and intelligent decision rooms. In: Nakashima, H., Aghajan, H., Augusto, J.C. (eds.) Handbook of Ambient Intelligence and Smart Environments, pp. 851–880. Springer, Boston (2010)CrossRefGoogle Scholar
  63. 63.
    Reades, J., Calabrese, F., Sevtsuk, A., Ratti, C.: Cellular census: explorations in urban data collection. IEEE Pervasive Comput. 6, 30–38 (2007)CrossRefGoogle Scholar
  64. 64.
    Remagnino, P., Foresti, G.: Ambient intelligence: a new multidisciplinary paradigm. IEEE Trans. Syst. Man. Cybern. Part A. Syst. Hum. 35, 1–6 (2005)CrossRefGoogle Scholar
  65. 65.
    Sagun, A., Bouchlaghem, D., Anumba, C.J.: Computer simulations vs. building guidance to enhance evacuation performance of buildings during emergency events. Simulat. Model. Pract. Theor. 19, 1007–1019 (2011)CrossRefGoogle Scholar
  66. 66.
    Sharpanskykh, A., Zia, K.: Grouping behaviour in AmI-enabled crowd evacuation. Adv. Intell. Soft. Comput. 92, 233–240 (2011)CrossRefGoogle Scholar
  67. 67.
    Shi, Y., Qin, W., Suo, Y., Xiao, X.: Smart classroom: bringing pervasive computing into distance learning. In: Nakashima, H., Aghajan, H., Augusto, J.C. (eds.) Handbook of ambient intelligence and smart environments, pp. 881–910. Springer, Boston (2010)CrossRefGoogle Scholar
  68. 68.
    Sikora, W., Malinowski, J.: Symmetry approach to evacuation scenarios. Lect. Notes Comput. Sci. 6071(2010), 229–241 (2010)CrossRefGoogle Scholar
  69. 69.
    Silveira Jacques Junior, J., Musse, S., Jung, C.: Crowd analysis using computer vision techniques. IEEE Signal Process. Mag. 19, 345–357 (2010)Google Scholar
  70. 70.
    SOCIONICAL.: Social science literature review: emergency, queue and crowd: definitions and cultural comparisons’ prepared by the SOCIONICAL LSE team (2012)Google Scholar
  71. 71.
    Tango, F., Montanari, R.: Shaping the drivers’ interaction: how the new vehicle systems match the technological requirements and the human needs. Cogn. Technol. Work 8, 215–226 (2006)CrossRefGoogle Scholar
  72. 72.
    Vaccari, A., Rojas, F.,Ratti, C., Martino, M.: Pulse of the city : visualizing urban dynamics of special events. In: Proceedings of GraphiCon, St.Petersburg pp. 64–71. (2010)Google Scholar
  73. 73.
    Was, J., Lubas, R., Mysliwiec, W.: Proxemics in discrete simulation of evacuation. Lect. Notes Comput. Sci. 7495(2012), 768–775 (2012)CrossRefGoogle Scholar
  74. 74.
    Weiser, M.: The computer for the 21st century. Sci. Am. 265, 94–104 (1991)CrossRefGoogle Scholar
  75. 75.
    White, J., Quick, J., Philippou, P.: The use of mobile phone location data for traffic information. In: 12th IEE international conference on road transport information and control (RTIC 2004), IET, pp. 321–325 (2004)Google Scholar
  76. 76.
    Wirz, M., Roggen, D., Troster, G.: Decentralized detection of group formations from wearable acceleration sensors. In: International conference on computational science and engineering (CSE&09), Vol. 4, IEEE, Vancouver (2009)Google Scholar
  77. 77.
    Wirz, M., Franke, T.,Mitleton-kelly, E., et al.: CoenoSense: A framework for real-time detection and visualization of collective behaviors in human crowds by tracking mobile devices. In: European Conference on Complex Systems 2012 (ECCS’12) track on Social Dynamics 3–7 September 2012, Brussels (2012a)Google Scholar
  78. 78.
    Wirz, M., et al.: Inferring crowd conditions from pedestrians’ location traces for real-time crowd monitoring during city-scale mass gatherings. In: 2012 IEEE 21st international workshop on enabling technologies: infrastructure for collaborative enterprises (WETICE), IEEE, Toulouse (2012)Google Scholar
  79. 79.
    Wirz, M., Mitleton-Kelly, E., Franke, T., et al.: Using mobile technology and a participatory sensing approach for crowd monitoring and management during large-scale mass gatherings. In: Co-evolution of Intelligent Socio-Technical Systems: Modelling and Applications in Large Scale Emergency and Transport Domains. Berlin, Springer (2013)Google Scholar
  80. 80.
    Wright, D.: Alternative futures: AmI scenarios and minority report. Futures 40, 473–488 (2008)CrossRefGoogle Scholar
  81. 81.
    Yau, S.S., Gupta, S. K. S., Karim, F., Ahamed, S.I., Wang, Y., Wang, B.: Smart classroom: enhancing collaborative learning using pervasive computing technology. In: Proceedings of the 6th WFEO world congress on engineering education and the 2nd ASEE international colloquium on engineering education (ASEE &03), Nashville, pp. 13633–13642 (2003)Google Scholar
  82. 82.
    Zhan, B., Monekosso, D.N., Remagnino, P., Velastin, S.A., Xu, L.-Q.: Crowd analysis: a survey. Mach. Vis. Appl. 19, 345–357 (2008)zbMATHCrossRefGoogle Scholar
  83. 83.
    Zheng, X., Zhong, T., Liu, M.: Modeling crowd evacuation of a building based on seven methodological approaches. Build. Environ. 44, 437–445 (2009)CrossRefGoogle Scholar
  84. 84.
    Zia, K., et al.: Scenario based modeling for very large scale simulations. In: 2010 IEEE/ACM 14th international symposium on distributed simulation and real time applications (DS-RT), IEEE, Fairfax (2010)Google Scholar
  85. 85.
    Munchner Kreis et al.: Zukunft und Zukunftsfahigkeit der Informations und Kommunikationstechnologien und Medien, International Delphi Studie 2030, Nationale IT Gipfel, Stuttgart, 2009Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Eve Mitleton-Kelly
    • 1
    Email author
  • Ivan Deschenaux
    • 1
  • Christian Maag
    • 2
  • Matthew Fullerton
    • 3
  • Nihan Celikkaya
    • 3
  1. 1.The London School of Economics and Political ScienceComplexity Research GroupLondonUK
  2. 2.University of Wurzburg (on traffic)WürzburgGermany
  3. 3.Technical University of Munich (TUM) (on traffic)MunichGermany

Personalised recommendations