Advertisement

When Homomorphism Becomes a Liability

  • Zvika Brakerski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7785)

Abstract

We show that an encryption scheme cannot have a simple decryption function and be homomorphic at the same time, even with added noise. Specifically, if a scheme can homomorphically evaluate the majority function, then its decryption cannot be weakly-learnable (in particular, linear), even if the probability of decryption error is high. (In contrast, without homomorphism, such schemes do exist and are presumed secure, e.g. based on LPN.)

An immediate corollary is that known schemes that are based on the hardness of decoding in the presence of low hamming-weight noise cannot be fully homomorphic. This applies to known schemes such as LPN-based symmetric or public key encryption.

Using these techniques, we show that the recent candidate fully homomorphic encryption, suggested by Bogdanov and Lee (ePrint ’11, henceforth BL), is insecure. In fact, we show two attacks on the BL scheme: One that uses homomorphism, and another that directly attacks a component of the scheme.

Keywords

Encryption Scheme Homomorphic Encryption Decryption Function Decryption Error Cryptology ePrint Archive 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Alekhnovich, M.: More on average case vs approximation complexity. In: FOCS, pp. 298–307. IEEE Computer Society (2003)Google Scholar
  2. 2.
    Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast Cryptographic Primitives and Circular-Secure Encryption Based on Hard Learning Problems. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Bogdanov, A., Lee, C.H.: Homomorphic encryption from codes. Cryptology ePrint Archive, Report 2011/622 (2011), http://eprint.iacr.org/
  4. 4.
    Brakerski, Z.: Fully Homomorphic Encryption without Modulus Switching from Classical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 868–886. Springer, Heidelberg (2012), http://eprint.iacr.org/2012/078Google Scholar
  5. 5.
    Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic encryption without bootstrapping. In: ITCS 2012 (2012), http://eprint.iacr.org/2011/277
  6. 6.
    Brakerski, Z., Vaikuntanathan, V.: Fully Homomorphic Encryption from Ring-LWE and Security for Key Dependent Messages. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (standard) LWE. In: Ostrovsky [17], pp. 97–106, References are to full version http://eprint.iacr.org/2011/344
  8. 8.
    Gauthier, V., Otmani, A., Tillich, J.-P.: A distinguisher-based attack of a homomorphic encryption scheme relying on reed-solomon codes. Cryptology ePrint Archive, Report 2012/168 (2012), http://eprint.iacr.org/
  9. 9.
    Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC, pp. 169–178 (2009)Google Scholar
  10. 10.
    Gentry, C.: Toward Basing Fully Homomorphic Encryption on Worst-Case Hardness. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 116–137. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Gentry, C., Halevi, S.: Implementing Gentry’s Fully-Homomorphic Encryption Scheme. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 129–148. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Gentry, C., Halevi, S., Smart, N.P.: Fully Homomorphic Encryption with Polylog Overhead. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 465–482. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  13. 13.
    Gilbert, H., Robshaw, M.J.B., Seurin, Y.: How to Encrypt with the LPN Problem. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 679–690. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Goldwasser, S., Micali, S.: Probabilistic encryption and how to play mental poker keeping secret all partial information. In: Lewis, H.R., Simons, B.B., Burkhard, W.A., Landweber, L.H. (eds.) STOC, pp. 365–377. ACM (1982)Google Scholar
  15. 15.
    Kearns, M.J., Valiant, L.G.: Cryptographic limitations on learning boolean formulae and finite automata. J. ACM 41(1), 67–95 (1994); Preliminary version in STOC 1989MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Klivans, A.R., Sherstov, A.A.: Cryptographic hardness for learning intersections of halfspaces. J. Comput. Syst. Sci. 75(1), 2–12 (2009); Preliminary version in FOCS 2006MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Ostrovsky, R. (ed.): IEEE 52nd Annual Symposium on Foundations of Computer Science, FOCS 2011, Palm Springs, CA, USA, October 22-25. IEEE (2011)Google Scholar
  18. 18.
    Schapire, R.E.: The strength of weak learnability. Machine Learning 5, 197–227 (1990); Preliminary version in FOCS 1989Google Scholar
  19. 19.
    Smart, N.P., Vercauteren, F.: Fully Homomorphic Encryption with Relatively Small Key and Ciphertext Sizes. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 420–443. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  20. 20.
    Vaikuntanathan, V.: Computing blindfolded: New developments in fully homomorphic encryption. In: Ostrovsky [17], pp. 5–16Google Scholar
  21. 21.
    Valiant, L.G.: A theory of the learnable. Commun. ACM 27(11), 1134–1142 (1984); Preliminary version in STOC 1984CrossRefzbMATHGoogle Scholar
  22. 22.
    van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully Homomorphic Encryption over the Integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 24–43. Springer, Heidelberg (2010), Full Version in http://eprint.iacr.org/2009/616.pdfCrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2013

Authors and Affiliations

  • Zvika Brakerski
    • 1
  1. 1.Stanford UniversityUSA

Personalised recommendations