Advertisement

Attribute-Based Functional Encryption on Lattices

  • Xavier Boyen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7785)

Abstract

We introduce a broad lattice manipulation technique for expressive cryptography, and use it to realize functional encryption for access structures from post-quantum hardness assumptions.

Specifically, we build an efficient key-policy attribute-based encryption scheme, and prove its security in the selective sense from learning-with-errors intractability in the standard model.

References

  1. 1.
    Agrawal, S., Boneh, D., Boyen, X.: Efficient Lattice (H)IBE in the Standard Model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Agrawal, S., Boneh, D., Boyen, X.: Lattice Basis Delegation in Fixed Dimension and Shorter-Ciphertext Hierarchical IBE. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 98–115. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Agrawal, S., Boyen, X., Vaikuntanathan, V., Voulgaris, P., Wee, H.: Functional Encryption for Threshold Functions (or Fuzzy IBE) from Lattices. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 280–297. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  4. 4.
    Agrawal, S., Freeman, D.M., Vaikuntanathan, V.: Functional Encryption for Inner Product Predicates from Learning with Errors. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 21–40. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In: STOC 1996 (1996)Google Scholar
  6. 6.
    Ajtai, M.: Generating Hard Instances of the Short Basis Problem. In: Wiedermann, J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 1–9. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  7. 7.
    Ajtai, M., Dwork, C.: A public-key cryptosystem with worst-case/average-case equivalence. In: STOC 1997 (1997)Google Scholar
  8. 8.
    Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices. In: STACS 2009 (2009)Google Scholar
  9. 9.
    Beimel, A.: Secure schemes for secret sharing and key distribution. PhD thesis, Department of Computer Science, Technion (1996)Google Scholar
  10. 10.
    Boneh, D., Gentry, C., Hamburg, M.: Space-efficient identity based encryption without pairings. In: FOCS 2007 (2007)Google Scholar
  11. 11.
    Boneh, D., Sahai, A., Waters, B.: Functional Encryption: Definitions and Challenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Boyen, X.: Lattice Mixing and Vanishing Trapdoors: A Framework for Fully Secure Short Signatures and More. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 499–517. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Boyen, X.: Attribute-based functional encryption on lattices. Cryptology ePrint Archive, Report 2012/??? (December 21, 2012), http://eprint.iacr.org/
  14. 14.
    Brakerski, Z., Vaikuntanathan, V.: Fully Homomorphic Encryption from Ring-LWE and Security for Key Dependent Messages. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai Trees, or How to Delegate a Lattice Basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 523–552. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Cocks, C.: An Identity Based Encryption Scheme Based on Quadratic Residues. In: Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  17. 17.
    Microsoft Corporation. Attribute based encryption using lattices. Application USPTO 20120155635 (December 17, 2010)Google Scholar
  18. 18.
    Ducas, L., Nguyen, P.Q.: Faster Gaussian Lattice Sampling Using Lazy Floating-Point Arithmetic. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 415–432. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  19. 19.
    Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC 2009 (2009)Google Scholar
  20. 20.
    Gentry, C.: Toward Basing Fully Homomorphic Encryption on Worst-Case Hardness. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 116–137. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  21. 21.
    Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: STOC 2008 (2008)Google Scholar
  22. 22.
    Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of encrypted data. In: CCS 2006 (2006)Google Scholar
  23. 23.
    Katz, J., Sahai, A., Waters, B.: Predicate Encryption Supporting Disjunctions, Polynomial Equations, and Inner Products. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  24. 24.
    Lewko, A., Waters, B.: Decentralizing attribute-based encryption. Cryptology ePrint Archive, Report 2010/351 (2010), http://eprint.iacr.org/
  25. 25.
    Lyubashevsky, V.: Lattice Signatures without Trapdoors. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  26. 26.
    Micciancio, D.: Generalized compact knapsacks, cyclic lattices, and efficient one-way functions from worst-case complexity assumptions. In: FOCS 2002 (2002)Google Scholar
  27. 27.
    Miller, V.: The Weil pairing, and its efficient calculation. J. Cryptology (2004)Google Scholar
  28. 28.
    Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem: extended abstract. In: STOC 2009 (2009)Google Scholar
  29. 29.
    Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. SIAM J. Computing (2011)Google Scholar
  30. 30.
    Regev, O.: New lattice-based cryptographic constructions. J. ACM (2004)Google Scholar
  31. 31.
    Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: STOC 2005 (2005)Google Scholar
  32. 32.
    Sahai, A., Waters, B.: Fuzzy Identity-Based Encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  33. 33.
    Waters, B.: Functional Encryption for Regular Languages. In: Safavi-Naini, R. (ed.) CRYPTO 2012. LNCS, vol. 7417, pp. 218–235. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2013

Authors and Affiliations

  • Xavier Boyen

There are no affiliations available

Personalised recommendations