Advertisement

Multi-Client Non-interactive Verifiable Computation

  • Seung Geol Choi
  • Jonathan Katz
  • Ranjit Kumaresan
  • Carlos Cid
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7785)

Abstract

Gennaro et al. (Crypto 2010) introduced the notion of non-interactive verifiable computation, which allows a computationally weak client to outsource the computation of a function f on a series of inputs x(1),... to a more powerful but untrusted server. Following a pre-processing phase (that is carried out only once), the client sends some representation of its current input x(i) to the server; the server returns an answer that allows the client to recover the correct result f(x(i)), accompanied by a proof of correctness that ensures the client does not accept an incorrect result. The crucial property is that the work done by the client in preparing its input and verifying the server’s proof is less than the time required for the client to compute f on its own.

We extend this notion to the multi-client setting, where n computationally weak clients wish to outsource to an untrusted server the computation of a function f over a series of joint inputs \((x_1^{(1)},...,x_1^{(1)})\),... without interacting with each other. We present a construction for this setting by combining the scheme of Gennaro et al. with a primitive called proxy oblivious transfer.

Keywords

Homomorphic Encryption Interactive Proof Sender Message Homomorphic Encryption Scheme Garble Circuit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Applebaum, B., Ishai, Y., Kushilevitz, E.: From Secrecy to Soundness: Efficient Verification via Secure Computation (Extended Abstract). In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010, Part I. LNCS, vol. 6198, pp. 152–163. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Babai, L.: Trading group theory for randomness. In: 17th Annual ACM Symposium on Theory of Computing (STOC), pp. 421–429. ACM Press (1985)Google Scholar
  3. 3.
    Bellare, M., Hoang, V.T., Rogaway, P.: Adaptively Secure Garbling with Applications to One-Time Programs and Secure Outsourcing. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 134–153. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  4. 4.
    Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: 19th ACM Conf. on Computer and Communications Security (CCS), pp. 784–796. ACM Press (2012)Google Scholar
  5. 5.
    Benabbas, S., Gennaro, R., Vahlis, Y.: Verifiable Delegation of Computation over Large Datasets. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 111–131. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Bitanksy, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composition and bootstrapping for SNARKs and proof-carrying data, http://eprint.iacr.org/2012/095
  7. 7.
    Canetti, R., Riva, B., Rothblum, G.: Practical delegation of computation using multiple servers. In: 18th ACM Conf. on Computer and Communications Security (CCS), pp. 445–454. ACM Press (2011)Google Scholar
  8. 8.
    Canetti, R., Riva, B., Rothblum, G.: Two Protocols for Delegation of Computation. In: Smith, A. (ed.) ICITS 2012. LNCS, vol. 7412, pp. 37–61. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. 9.
    Chaum, D., Pedersen, T.P.: Wallet Databases with Observers. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  10. 10.
    Chung, K.-M., Kalai, Y., Vadhan, S.: Improved Delegation of Computation Using Fully Homomorphic Encryption. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 483–501. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Cormode, G., Mitzenmacher, M., Thaler, J.: Practical verified computation with streaming interactive proofs. In: Proc. 3rd Innovations in Theoretical Computer Science Conference (ITCS), pp. 90–112. ACM (2012)Google Scholar
  12. 12.
    Fiore, D., Gennaro, R.: Publicly verifiable delegation of large polynomials and matrix computations, with applications. In: 19th ACM Conf. on Computer and Communications Security (CCS), pp. 501–512. ACM Press (2012)Google Scholar
  13. 13.
    Gennaro, R., Gentry, C., Parno, B.: Non-interactive Verifiable Computing: Outsourcing Computation to Untrusted Workers. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: Interactive proofs for muggles. In: 40th Annual ACM Symposium on Theory of Computing (STOC), pp. 113–122. ACM Press (2008)Google Scholar
  15. 15.
    Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM Journal on Computing 18(1), 186–208 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Golle, P., Mironov, I.: Uncheatable Distributed Computations. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 425–440. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  17. 17.
    Hohenberger, S., Lysyanskaya, A.: How to Securely Outsource Cryptographic Computations. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 264–282. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Kamara, S., Mohassel, P., Raykova, M.: Outsourcing multi-party computation, http://eprint.iacr.org/2011/272
  19. 19.
    Kilian, J.: A note on efficient zero-knowledge proofs and arguments. In: 24th Annual ACM Symposium on Theory of Computing (STOC), pp. 723–732. ACM Press (1992)Google Scholar
  20. 20.
    Kilian, J.: Improved Efficient Arguments. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 311–324. Springer, Heidelberg (1995)Google Scholar
  21. 21.
    Micali, S.: Computationally sound proofs. SIAM Journal on Computing 30(4), 1253–1298 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Naor, M., Pinkas, B., Sumner, R.: Privacy preserving auctions and mechanism design. In: ACM Conf. Electronic Commerce, pp. 129–139 (1999)Google Scholar
  23. 23.
    Papamanthou, C., Shi, E., Tamassia, R.: Signatures of Correct Computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 222–242. Springer, Heidelberg (2013)Google Scholar
  24. 24.
    Parno, B., Raykova, M., Vaikuntanathan, V.: How to Delegate and Verify in Public: Verifiable Computation from Attribute-Based Encryption. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 422–439. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  25. 25.
    Yao, A.C.-C.: How to generate and exchange secrets. In: 27th Annual Symposium on Foundations of Computer Science (FOCS), pp. 162–167. IEEE (1986)Google Scholar

Copyright information

© International Association for Cryptologic Research 2013

Authors and Affiliations

  • Seung Geol Choi
    • 1
  • Jonathan Katz
    • 2
  • Ranjit Kumaresan
    • 3
  • Carlos Cid
    • 4
  1. 1.Department of Computer ScienceColumbia UniversityUSA
  2. 2.Department of Computer ScienceUniversity of MarylandUSA
  3. 3.Department of Computer ScienceTechnionIsrael
  4. 4.Royal HollowayUniversity of LondonUK

Personalised recommendations