Advertisement

Universally Composable Synchronous Computation

  • Jonathan Katz
  • Ueli Maurer
  • Björn Tackmann
  • Vassilis Zikas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7785)

Abstract

In synchronous networks, protocols can achieve security guarantees that are not possible in an asynchronous world: they can simultaneously achieve input completeness (all honest parties’ inputs are included in the computation) and guaranteed termination (honest parties do not “hang” indefinitely). In practice truly synchronous networks rarely exist, but synchrony can be emulated if channels have (known) bounded latency and parties have loosely synchronized clocks.

The widely-used framework of universal composability (UC) is inherently asynchronous, but several approaches for adding synchrony to the framework have been proposed. However, we show that the existing proposals do not provide the expected guarantees. Given this, we propose a novel approach to defining synchrony in the UC framework by introducing functionalities exactly meant to model, respectively, bounded-delay networks and loosely synchronized clocks. We show that the expected guarantees of synchronous computation can be achieved given these functionalities, and that previous similar models can all be expressed within our new framework.

Keywords

Ideal Functionality Guarantee Termination Protocol Execution Honest Party Synchronous Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Asharov, G., Lindell, Y., Rabin, T.: Perfectly-Secure Multiplication for Any t < n/3. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 240–258. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Awerbuch, B.: Complexity of Network Synchronization. Journal of the ACM 32, 804–823 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Backes, M.: Unifying Simulatability Definitions in Cryptographic Systems under Different Timing Assumptions. In: Amadio, R.M., Lugiez, D. (eds.) CONCUR 2003. LNCS, vol. 2761, pp. 350–365. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Backes, M., Hofheinz, D., Müller-Quade, J., Unruh, D.: On Fairness in Simulatability-based Cryptographic Systems. In: Proceedings of FMSE, pp. 13–22. ACM (2005)Google Scholar
  5. 5.
    Backes, M., Pfitzmann, B., Steiner, M., Waidner, M.: Polynomial Fairness and Liveness. In: Proceedings of the 15th Annual IEEE Computer Security Foundations Workshop, pp. 160–174. IEEE (2002)Google Scholar
  6. 6.
    Backes, M., Pfitzmann, B., Waidner, M.: The Reactive Simulatability (RSIM) Framework for Asynchronous Systems. Information and Computation 205, 1685–1720 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Ben-Or, M., Canetti, R., Goldreich, O.: Asynchronous Secure Computation. In: Proceedings of the 25th Annual ACM Symposium on Theory of Computing, pp. 52–61. ACM (1993)Google Scholar
  8. 8.
    Ben-Or, M., Goldwasser, S., Widgerson, A.: Completeness Theorems for Non-Cryptographic Fault-Tolerant Distributed Computation. In: Proceedings of the 20th Annual ACM Symposium on Theory of Computing, pp. 1–10. ACM (1988)Google Scholar
  9. 9.
    Canetti, R.: Studies in Secure Multiparty Computation and Applications. PhD thesis, The Weizmann Institute of Science (1996)Google Scholar
  10. 10.
    Canetti, R.: Universally Composable Security: A New Paradigm for Cryptographic Protocols. In: Cryptology ePrint Archive, Report 2000/067 (2005)Google Scholar
  11. 11.
    Canetti, R.: Security and Composition of Multiparty Cryptographic Protocols. Journal of Cryptology 13, 143–202 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Canetti, R.: Universally Composable Security: A New Paradigm for Cryptographic Protocols. In: Proceedings of the 42nd Annual IEEE Symposium on Foundations of Computer Science, pp. 136–145. IEEE (2001)Google Scholar
  13. 13.
    Canetti, R., Fischlin, M.: Universally Composable Commitments. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  14. 14.
    Canetti, R., Krawczyk, H.: Universally Composable Notions of Key Exchange and Secure Channels. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 337–351. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  15. 15.
    Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally Composable Two-Party and Multi-Party Secure Computation. In: Proceedings of the 34th Annual ACM Symposium on Theory of Computing, pp. 494–503. ACM (2002)Google Scholar
  16. 16.
    Chaum, D., Crépeau, C., Damgård, I.: Multiparty Unconditionally Secure Protocols. In: Proceedings of the 20th Annual ACM Symposium on Theory of Computing, pp. 11–19. ACM (1988)Google Scholar
  17. 17.
    Chor, B., Moscovici, L.: Solvability in Asynchronous Environments. In: Proceedings of the 30th Annual IEEE Symposium on Foundations of Computer Science, pp. 422–427. IEEE (1989)Google Scholar
  18. 18.
    Dodis, Y., Micali, S.: Parallel Reducibility for Information-Theoretically Secure Computation. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 74–92. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  19. 19.
    Dolev, D., Strong, H.R.: Polynomial Algorithms for Multiple Processor Agreement. In: Proceedings of the 14th Annual ACM Symposium on Theory of Computing, pp. 401–407. ACM (1982)Google Scholar
  20. 20.
    Dwork, C., Naor, M., Sahai, A.: Concurrent Zero-Knowledge. In: Proceedings of the 30th Annual ACM Symposium on Theory of Computing, pp. 409–418. ACM (1998)Google Scholar
  21. 21.
    Garay, J.A., Katz, J., Kumersan, R., Zhou, H.-S.: Adaptively Secure Broadcast, Revisited. In: Proceedings of the 30th Annual ACM Symposium on Principles of Distributed Computing, pp. 179–186. ACM (2011)Google Scholar
  22. 22.
    Goldreich, O., Micali, S., Widgerson, A.: How to Play any Mental Game—A Completeness Theorem for Protocols with Honest Majority. In: Proceedings of the 19th Annual ACM Symposium on Theory of Computing, pp. 218–229. ACM (1987)Google Scholar
  23. 23.
    Goldreich, O.: Concurrent Zero-Knowledge with Timing, Revisited. In: Proceedings of the 34th Annual ACM Symposium on Theory of Computing, pp. 332–340. ACM (2002)Google Scholar
  24. 24.
    Hirt, M., Zikas, V.: Adaptively Secure Broadcast. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 466–485. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  25. 25.
    Hofheinz, D., Müller-Quade, J.: A Synchronous Model for Multi-Party Computation and the Incompleteness of Oblivious Transfer. In: Proceedings of Foundations of Computer Security — FCS 2004, pp. 117–130 (2004)Google Scholar
  26. 26.
    Kalai, Y.T., Lindell, Y., Prabhakaran, M.: Concurrent General Composition of Secure Protocols in the Timing Model. In: Proceedings of the 37th Annual ACM Symposium on Theory of Computing, pp. 644–653. ACM (2005)Google Scholar
  27. 27.
    Katz, J., Maurer, U., Tackmann, B., Zikas, V.: Universally Composable Synchronous Computation. In: Cryptology ePrint Archive, Report 2011/310 (2012)Google Scholar
  28. 28.
    Künzler, R., Müller-Quade, J., Raub, D.: Secure Computability of Functions in the IT Setting with Dishonest Majority and Applications to Long-Term Security. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 238–255. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  29. 29.
    Kushilevitz, E., Lindell, Y., Rabin, T.: Information-theoretically Secure Protocols and Security under Composition. In: Proceedings of the 38th Annual ACM Symposium on Theory of Computing, pp. 109–118. ACM (2006)Google Scholar
  30. 30.
    Maji, H., Prabhakaran, M., Rosulek, M.: Cryptographic Complexity Classes and Computational Intractability Assumptions. In: Innovations in Computer Science. Tsinghua University Press (2010)Google Scholar
  31. 31.
    Maurer, U.: Constructive Cryptography – A New Paradigm for Security Definitions and Proofs. In: Mödersheim, S., Palamidessi, C. (eds.) TOSCA 2011. LNCS, vol. 6993, pp. 33–56. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  32. 32.
    Maurer, U., Renner, R.: Abstract Cryptography. In: Innovations in Computer Science. Tsinghua University Press (2011)Google Scholar
  33. 33.
    Maurer, U., Tackmann, B.: Synchrony Amplification. In: International Symposium on Information Theory Proceedings, pp. 1583–1587. IEEE (2012)Google Scholar
  34. 34.
    Nielsen, J.B.: On Protocol Security in the Cryptographic Model. PhD thesis, University of Aarhus (2003)Google Scholar
  35. 35.
    Rabin, T., Ben-Or, M.: Verifiable Secret Sharing and Multiparty Protocols with Honest Majority. In: Proceedings of the 21st Annual ACM Symposium on Theory of Computing, pp. 73–85. ACM (1989)Google Scholar

Copyright information

© International Association for Cryptologic Research 2013

Authors and Affiliations

  • Jonathan Katz
    • 1
  • Ueli Maurer
    • 2
  • Björn Tackmann
    • 2
  • Vassilis Zikas
    • 3
  1. 1.Dept. of Computer ScienceUniversity of MarylandUSA
  2. 2.Dept.of Computer ScienceETH ZürichSwitzerland
  3. 3.Dept. of Computer ScienceUCLAUSA

Personalised recommendations