Advertisement

Communication Locality in Secure Multi-party Computation

How to Run Sublinear Algorithms in a Distributed Setting
  • Elette Boyle
  • Shafi Goldwasser
  • Stefano Tessaro
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7785)

Abstract

We devise multi-party computation protocols for general secure function evaluation with the property that each party is only required to communicate with a small number of dynamically chosen parties. More explicitly, starting with n parties connected via a complete and synchronous network, our protocol requires each party to send messages to (and process messages from) at most polylog(n) other parties using polylog(n) rounds. It achieves secure computation of any polynomial-time computable randomized function f under cryptographic assumptions, and tolerates up to \(({1\over 3} - \epsilon) \cdot n\) statically scheduled Byzantine faults.

We then focus on the particularly interesting setting in which the function to be computed is a sublinear algorithm: An evaluation of f depends on the inputs of at most q = o(n) of the parties, where the identity of these parties can be chosen randomly and possibly adaptively. Typically, q = polylog(n). While the sublinear query complexity of f makes it possible in principle to dramatically reduce the communication complexity of our general protocol, the challenge is to achieve this while maintaining security: in particular, while keeping the identities of the selected inputs completely hidden. We solve this challenge, and we provide a protocol for securely computing such sublinear f that runs in polylog(n) + O(q) rounds, has each party communicating with at most q ·polylog(n) other parties, and supports message sizes polylog(n) ·(ℓ + n), where ℓ is the parties’ input size.

Our optimized protocols rely on a multi-signature scheme, fully homomorphic encryption (FHE), and simulation-sound adaptive NIZK arguments. However, we remark that multi-signatures and FHE are used to obtain our bounds on message size and round complexity. Assuming only standard digital signatures and public-key encryption, one can still obtain the property that each party only communicates with polylog(n) other parties. We emphasize that the scheduling of faults can depend on the initial PKI setup of digital signatures and the NIZK parameters.

Keywords

Homomorphic Encryption Honest Party Swap Gate Secure Multiparty Computation Secure Function Evaluation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Collection of surveys on sublinear algorithms, http://people.csail.mit.edu/ronitt/sublinear.html
  2. 2.
    Adida, B., Wikström, D.: How to Shuffle in Public. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 555–574. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.: Multiparty Computation with Low Communication, Computation and Interaction via Threshold FHE. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  4. 4.
    Asharov, G., Lindell, Y.: A full proof of the bgw protocol for perfectly-secure multiparty computation. IACR Cryptology ePrint Archive, 2011:136 (2011)Google Scholar
  5. 5.
    Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation. In: STOC, pp. 1–10 (1988)Google Scholar
  6. 6.
    Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its applications (extended abstract). In: STOC, pp. 103–112 (1988)Google Scholar
  7. 7.
    Blum, M., De Santis, A., Micali, S., Persiano, G.: Noninteractive zero-knowledge. SIAM J. Comput. 20(6), 1084–1118 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and Verifiably Encrypted Signatures from Bilinear Maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 416–432. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Brakerski, Z., Gentry, C., Vaikuntanathan, V.: Fully homomorphic encryption without bootstrapping. In: ITCS, pp. 309–325 (2012)Google Scholar
  10. 10.
    Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (standard) lwe. In: FOCS (2011)Google Scholar
  11. 11.
    Canetti, R.: Security and composition of cryptographic protocols: A tutorial. Cryptology ePrint Archive, Report 2006/465 (2006), http://eprint.iacr.org/
  12. 12.
    Chandran, N., Garay, J., Ostrovsky, R.: Improved Fault Tolerance and Secure Computation on Sparse Networks. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 249–260. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Chandran, N., Garay, J., Ostrovsky, R.: Edge Fault Tolerance on Sparse Networks. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part II. LNCS, vol. 7392, pp. 452–463. Springer, Heidelberg (2012)Google Scholar
  14. 14.
    Chaum, D., Crépeau, C., Damgård, I.: Multiparty Unconditionally Secure Protocols. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, p. 462. Springer, Heidelberg (1988)Google Scholar
  15. 15.
    Chor, B., Goldwasser, S., Micali, S., Awerbuch, B.: Verifiable secret sharing and achieving simultaneity in the presence of faults. In: FOCS, pp. 383–395 (1985)Google Scholar
  16. 16.
    Czumaj, A., Kanarek, P., Lorys, K., Kutylowski, M.: Switching networks for generating random permutations. Manuscript (2001)Google Scholar
  17. 17.
    Damgård, I., Ishai, Y.: Scalable Secure Multiparty Computation. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 501–520. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    Damgård, I., Ishai, Y., Krøigaard, M.: Perfectly Secure Multiparty Computation and the Computational Overhead of Cryptography. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 445–465. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  19. 19.
    Damgård, I., Ishai, Y., Krøigaard, M., Nielsen, J.B., Smith, A.: Scalable Multiparty Computation with Nearly Optimal Work and Resilience. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 241–261. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  20. 20.
    Damgård, I., Nielsen, J.B.: Scalable and Unconditionally Secure Multiparty Computation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 572–590. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  21. 21.
    Dani, V., King, V., Movahedi, M., Saia, J.: Breaking the o(nm) bit barrier: Secure multiparty computation with a static adversary. CoRR, abs/1203.0289 (2012)Google Scholar
  22. 22.
    Feige, U., Lapidot, D., Shamir, A.: Multiple non-interactive zero knowledge proofs based on a single random string (extended abstract). In: FOCS, pp. 308–317 (1990)Google Scholar
  23. 23.
    Feigenbaum, J., Ishai, Y., Malkin, T., Nissim, K., Strauss, M.J., Wright, R.N.: Secure multiparty computation of approximations. ACM Transactions on Algorithms 2(3), 435–472 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Feldman, P., Micali, S.: Optimal algorithms for byzantine agreement. In: STOC, pp. 148–161 (1988)Google Scholar
  25. 25.
    Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC, pp. 169–178 (2009)Google Scholar
  26. 26.
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: STOC, pp. 218–229 (1987)Google Scholar
  27. 27.
    Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious rams. J. ACM 43(3), 431–473 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Dov Gordon, S., Katz, J., Kolesnikov, V., Malkin, T., Raykova, M., Vahlis, Y.: Secure computation with sublinear amortized work. IACR Cryptology ePrint Archive, 2011:482 (2011)Google Scholar
  29. 29.
    Halevi, S., Krauthgamer, R., Kushilevitz, E., Nissim, K.: Private approximation of np-hard functions. In: STOC, pp. 550–559 (2001)Google Scholar
  30. 30.
    Halevi, S., Lindell, Y., Pinkas, B.: Secure Computation on the Web: Computing without Simultaneous Interaction. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 132–150. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  31. 31.
    Indyk, P., Woodruff, D.P.: Polylogarithmic Private Approximations and Efficient Matching. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 245–264. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  32. 32.
    King, V., Lonargan, S., Saia, J., Trehan, A.: Load Balanced Scalable Byzantine Agreement through Quorum Building, with Full Information. In: Aguilera, M.K., Yu, H., Vaidya, N.H., Srinivasan, V., Choudhury, R.R. (eds.) ICDCN 2011. LNCS, vol. 6522, pp. 203–214. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  33. 33.
    King, V., Saia, J.: Breaking the o(n2) bit barrier: Scalable byzantine agreement with an adaptive adversary. J. ACM 58(4), 18 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    King, V., Saia, J., Sanwalani, V., Vee, E.: Scalable leader election. In: SODA, pp. 990–999 (2006)Google Scholar
  35. 35.
    López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation on the cloud via multikey fully homomorphic encryption. In: STOC, pp. 1219–1234 (2012)Google Scholar
  36. 36.
    Lu, S., Ostrovsky, R., Sahai, A., Shacham, H., Waters, B.: Sequential Aggregate Signatures and Multisignatures Without Random Oracles. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 465–485. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  37. 37.
    Maurer, U.M., Pietrzak, K., Renner, R.S.: Indistinguishability Amplification. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 130–149. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  38. 38.
    McEliece, R.J., Sarwate, D.V.: On sharing secrets and reed-solomon codes. Commun. ACM 24, 583–584 (1981)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Micali, S., Ohta, K., Reyzin, L.: Accountable-subgroup multisignatures: extended abstract. In: ACM Conference on Computer and Communications Security, pp. 245–254 (2001)Google Scholar
  40. 40.
    Naor, M., Nissim, K.: Communication preserving protocols for secure function evaluation. In: Proc. of 33rd STOC, pp. 590–599 (2001)Google Scholar
  41. 41.
    Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext security. In: FOCS, pp. 543–553 (1999)Google Scholar
  42. 42.
    De Santis, A., Di Crescenzo, G., Ostrovsky, R., Persiano, G., Sahai, A.: Robust Non-interactive Zero Knowledge. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 566–598. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  43. 43.
    Shamir, A.: How to share a secret. Communications of the ACM 22(11) (November 1979)Google Scholar
  44. 44.
    Waters, B.: Efficient Identity-Based Encryption Without Random Oracles. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2013

Authors and Affiliations

  • Elette Boyle
    • 1
  • Shafi Goldwasser
    • 2
  • Stefano Tessaro
    • 1
  1. 1.MIT CSAILUSA
  2. 2.MIT CSAIL and WeizmannUSA

Personalised recommendations