Skip to main content

Pharmacokinetic Aspects of Regional Tumor Therapy

  • Chapter
  • First Online:
Locoregional Tumor Therapy

Abstract

The aim of a safe and efficient drug therapy is to direct the agent as near as possible to its target where it generates its maximum pharmacological effect while keeping side effects at a minimum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 24.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Czejka MJ, Georgopoulos A. Pharmakokinetik. In: AKH Consilium der Medizinischen Universität Wien. Universimed Media Verlag, Wien. e-Book; 2006.

    Google Scholar 

  2. Austria Codex. Product information of drugs. 2006. http://www3.apoverlag.at/.

  3. Ritschel W, Kearns G. Handbook of basic pharmacokinetics, including clinical application. 6th ed. Washington, American Pharmacists Association. DC: APHA; 2004.

    Google Scholar 

  4. Collins JM. Pharmacologic rationale for regional drug delivery. J Clin Oncol. 1984;2:498–504.

    CAS  PubMed  Google Scholar 

  5. Czejka MJ, Schüller J, Micksche M. In vitro interaction of interferon-alpha-2b with microspheres particles. Pharmazie. 1992;47:387.

    PubMed  Google Scholar 

  6. Andersson M, Aronsen KF, Balch C, Domellöf L, Eksborg S, Hafström LO, Howell SB, Kåresen R, Midander J, Teder H. Pharmacokinetics of intra-arterial mitomycin C with or without degradable starch microspheres (DSM) in the treatment of non-resectable liver cancer. Acta Oncol. 1989;28:219–22.

    Article  CAS  PubMed  Google Scholar 

  7. Ensminger WD, Gyves JW, Stetson P, Walker-Andrews S. Phase I study of hepatic arterial degradable starch microspheres and mitomycin. Cancer Res. 1985;45:4464–7.

    CAS  PubMed  Google Scholar 

  8. Koike S, Fujimoto S, Guhji M, Shrestha RD, Kokubun M, Kobayashi K, Kiuchi S, Konno C, Okui K. Effect of degradable starch microspheres (DSM) on hepatic hemodynamics. Gan To Kagaku Ryoho. 1989;16:2818–21.

    CAS  PubMed  Google Scholar 

  9. Gyves JW, Ensminger WD, VanHarken D, Niederhuber J, Stetson P, Walker S. Improved regional selectivity of hepatic arterial mitomycin by starch microspheres. Clin Pharmacol Ther. 1983;34:259–65.

    Article  CAS  PubMed  Google Scholar 

  10. Pfeifle CE, Howell SB, Ashburn WL, Barone RM, Bookstein JJ. Pharmacologic studies of intra-hepatic artery chemotherapy with degradable starch microspheres. Cancer Drug Deliv. 1986;3:1–14.

    Article  CAS  PubMed  Google Scholar 

  11. Czejka M, Jäger W, Schüller J, Schernthaner G. Pharmakokinetik und lokale Verfügbarkeit von Mitomycin. Einfluss von Vasokonstriktion und Chemoembolisation. Arzneimittelforschung. 1991;41:260–3.

    CAS  PubMed  Google Scholar 

  12. Domellöf L, Andersson M, Eksborg S. Hepatic arterial chemotherapy and embolisation with degradable starch microspheres. In: Cancer chemotherapy: challenges for the future. Oxford: Elsevier Science Publishers B.V; 1989.

    Google Scholar 

  13. Teder H, Nilsson B, Jonsson K. Hepatic arterial administration of doxorubicin (Adriamycin) with or without degradable starch microspheres: a pharmacokinetic study in man. In: Antracyclines and cancer therapy. Amsterdam: Excerpta Medica; 1983.

    Google Scholar 

  14. Dakhil S, Ensminger W, Cho K, Niederhuber J, Doan K, Wheeler R. Improved regional selectivity of hepatic arterial BCNU with degradable microspheres. Cancer. 1982;50:631–5.

    Article  CAS  PubMed  Google Scholar 

  15. Bleiberg H, Pector J, Frühling J, Parmentier N, Gerard B, Gordon B, Ings R, Solere P, Lucas C. Hepatic intra-arterial fotemustine combined with degradable starch microspheres: pharmacokinetics in a phase I-II trial. Reg Cancer Treat. 1992;4:237–43.

    Google Scholar 

  16. Czejka MJ, Schüller J, Jäger W, Fogl U, Weiss C, Schernthaner G. Improvement of the local bioavailability of 5-fluorouracil; I: application of biodegradable microspheres and clinical pharmacokinetics. Int J Exp Clin Chemother. 1991:4(3):161.

    Google Scholar 

  17. Civalleri D, Esposito M, Fulco RA, Vannozzi M, Balletto N, DeCian F, Percivale PL, Merlo F. Liver and tumor uptake and plasma pharmacokinetic of arterial cisplatin administered with and without starch microspheres in patients with liver metastases. Cancer. 1991;68:988–94.

    Article  CAS  PubMed  Google Scholar 

  18. Tegeder I, Bräutigam L, Seegel M, Al-Dam A, Turowski B, Geisslinger G, Kovács AF. Cisplatin tumor concentrations after intra-arterial cisplatin infusion or embolization in patients with oral cancer. Clin Pharmacol Ther. 2003;73:417–26.

    Article  CAS  PubMed  Google Scholar 

  19. Morise Z, Sugioka A, Kato R, Fujita J, Hoshimoto S, Kato T. Transarterial chemoembolization with degradable starch microspheres, irinotecan, and mitomycin-C in patients with liver metastases. J Gastrointest Surg. 2006;10:249–58.

    Article  PubMed  Google Scholar 

  20. Rump AFE, Woschée U, Theisohn M, Fischbach R, Heindel W, Lackner K, Klaus W. Pharmacokinetics of intra-arterial mitomycin C in the chemoembolization treatment of liver metastases with polyvinylalcohol or degradable starch microspheres. Eur J Clin Pharmacol. 2002;58:459–65.

    Article  CAS  PubMed  Google Scholar 

  21. Pohlen U, Reszka R, Schneider P, Buhr HJ, Berger G. Stealth liposomal 5-fluorouracil with or without degradable starch microspheres for hepatic arterial infusion in the treatment of liver metastases. An animal study in VX-2 liver tumor-bearing rabbits. Anticancer Res. 2004;24:1699–704.

    CAS  PubMed  Google Scholar 

  22. Pohlen U, Reszka R, Buhr HJ, Berger G. Hepatic arterial infusion in the treatment of liver metastases with PEG liposomes in combination with degradable starch microspheres (DSM) increases tumor 5-FU concentration. An animal study in CC-531 liver tumor-bearing rats. Anticancer Res. 2011;31:147–52.

    CAS  PubMed  Google Scholar 

  23. Teder H, Johansson CJ. The effect of different dosages of degradable starch microspheres (Spherex) on the distribution of doxorubicin regionally administered to the rat. Anticancer Res. 1993;13:2161–4.

    CAS  PubMed  Google Scholar 

  24. Sigurdson ER, Ridge JA, Daly JM. Intra-arterial infusion of doxorubicin with degradable starch microspheres. Improvement of hepatic tumor drug uptake. Arch Surg. 1986;121:1277–81.

    Article  CAS  PubMed  Google Scholar 

  25. Thom AK, Zhang SZ, Deveney C, Daly JM. Effects of verapamil and degradable starch microspheres during hepatic artery infusion of doxorubicin. Surgery. 1990;107:552–9.

    CAS  PubMed  Google Scholar 

  26. Teder H, Johansson CJ, d’Argy R, Lundin N, Gunnarsson PO. The effect of different dose levels of degradable starch microspheres (Spherex) on the distribution of a cytotoxic drug after regional administration to tumour-bearing rats. Eur J Cancer. 1995;31:1701–5.

    Article  Google Scholar 

  27. Pohlen U, Berger G, Binnenhei M, Reszka R, Buhr HJ. Increased carboplatin concentration in liver tumors through temporary flow retardation with starch microspheres (Spherex) and gelatin powder (Gelfoam): an experimental study in liver tumor-bearing rabbits. J Surg Res. 2000;92:165–70.

    Article  CAS  PubMed  Google Scholar 

  28. Pohlen U, Rieger H, Meyer BT, Loddenkemper C, Buhr HJ, Heitland P, Koester HD, Schneider P. Chemoembolization of lung metastases–pharmacokinetic behaviour of carboplatin in a rat model. Anticancer Res. 2007;27:809–15.

    CAS  PubMed  Google Scholar 

  29. Pohlen U, Buhr HJ, Berger G. Improvement of biodistribution with PEGylated liposomes containing docetaxel with degradable starch microspheres for hepatic arterial infusion in the treatment of liver metastases: a study in CC-531 liver tumor-bearing WAG RIJ rats. Anticancer Res. 2011;31:153–9.

    CAS  PubMed  Google Scholar 

  30. Thom AK, Sigurdson ER, Bitar M, Daly JM. Regional hepatic arterial infusion of degradable starch microspheres increases fluorodeoxyuridine (FUdR) tumor uptake. Surgery. 1989;105:383–92.

    CAS  PubMed  Google Scholar 

  31. Hong K, Kobeiter H, Georgiades CS, Torbenson MS, Geschwind J-FH. Effects of the type of embolization particles on carboplatin concentration in liver tumors after transcatheter arterial chemoembolization in a rabbit model of liver cancer. J Vasc Interv Radiol. 2005;16:1711–7.

    Article  PubMed  Google Scholar 

  32. Hong K, Khwaja A, Liapi E, Torbenson MS, Georgiades CS, Geschwind J-FH. New intra-arterial drug delivery system for the treatment of liver cancer: preclinical assessment in a rabbit model of liver cancer. Clin Cancer Res. 2006;12:2563–7.

    Article  CAS  PubMed  Google Scholar 

  33. Gupta S, Wright KC, Ensor J, van Pelt CS, Dixon KA, Kundra V. Hepatic arterial embolization with doxorubicin-loaded superabsorbent polymer microspheres in a rabbit liver tumor model. Cardiovasc Intervent Radiol. 2011;34:1021–30.

    Article  PubMed  Google Scholar 

  34. Baylatry M-T, Pelage J-P, Wassef M, Ghegediban H, Joly A-C, Lewis A, Lacombe P, Fernandez C, Laurent A. Pulmonary artery chemoembolization in a sheep model: evaluation of performance and safety of irinotecan eluting beads (DEB-IRI). J Biomed Mater Res B Appl Biomater. 2011;98:351–9.

    Article  PubMed  Google Scholar 

  35. Rao PP, Pascale F, Seck A, Auperin A, Drouard-Troalen L, Deschamps F, Teriitheau C, Paci A, Denys A, Bize P, de Baere T. Irinotecan loaded in eluting beads: preclinical assessment in a rabbit VX2 liver tumor model. Cardiovasc Intervent Radiol. 2012;35(6):1448–59.

    Article  PubMed  Google Scholar 

  36. Lee K-H, Liapi EA, Cornell C, Reb P, Buijs M, Vossen JA, Ventura VP, Geschwind J-FH. Doxorubicin-loaded QuadraSphere microspheres: plasma pharmacokinetics and intratumoral drug concentration in an animal model of liver cancer. Cardiovasc Intervent Radiol. 2010;33:576–82.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Varela M, Real MI, Burrel M, Forner A, Sala M, Brunet M, Ayuso C, Castells L, Montañá X, Llovet JM, Bruix J. Chemoembolization of hepatocellular carcinoma with drug eluting beads: efficacy and doxorubicin pharmacokinetics. J Hepatol. 2007;46:474–81.

    Article  CAS  PubMed  Google Scholar 

  38. van Malenstein H, Maleux G, Vandecaveye V, Heye S, Laleman W, van Pelt J, Vaninbroukx J, Nevens F, Verslype C. A randomized phase II study of drug-eluting beads versus transarterial chemoembolization for unresectable hepatocellular carcinoma. Onkologie. 2011;34:368–76.

    Article  PubMed  Google Scholar 

  39. Poggi G, Amatu A, Montagna B, Quaretti P, Minoia C, Sottani C, Villani L, Tagliaferri B, Sottotetti F, Rossi O, Pozzi E, Zappoli F, Riccardi A, Bernardo G. OEM-TACE: a new therapeutic approach in unresectable intrahepatic cholangiocarcinoma. Cardiovasc Intervent Radiol. 2009;32:1187–92.

    Article  PubMed  Google Scholar 

  40. Namur J, Citron SJ, Sellers MT, Dupuis MH, Wassef M, Manfait M, Laurent A. Embolization of hepatocellular carcinoma with drug-eluting beads: doxorubicin tissue concentration and distribution in patient liver explants. J Hepatol. 2011;55(6):1332–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Czejka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Czejka, M., Schüller, K. (2015). Pharmacokinetic Aspects of Regional Tumor Therapy. In: Van Cutsem, E., Vogl, T., Orsi, F., Sobrero, A. (eds) Locoregional Tumor Therapy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36572-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36572-0_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36571-3

  • Online ISBN: 978-3-642-36572-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics