Skip to main content

Polysaccharide-Based Graft Copolymers for Biomedical Applications

  • Chapter
  • First Online:
Polysaccharide Based Graft Copolymers

Abstract

Polysaccharides play an important role in the field of science and technology because of their unique properties. The polysaccharides are available from natural and microbial resources. They are biodegradable as well as nontoxic. Water soluble polymers based on grafted polysaccharides have drawn much attention in recent decades because of their controlled biodegradability, shear stability, and high efficiency in various applications. One of the important applications of polysaccharide-based graft copolymers is in biomedical science—as matrix for controlled/targeted drug delivery. It is observed in authors’ laboratory that rate of release of enclosed drug can be precisely controlled by controlling the grafting/cross-linking efficiency. Thus tailor-made grafted polysaccharides have potential application in drug delivery research. This chapter deals with the techniques employed for the synthesis of grafted polysaccharides, and recent developments took place in author’s laboratory based on application of grafted polysaccharides in controlled/targeted drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maity S, Ranjit S, Sa B (2010) Polysaccharide-based graft copolymers in controlled drug delivery. Int J Pharm Tech Res 2:1350–1358

    Google Scholar 

  2. Kumar A, Singh K, Ahuja M (2009) Xanthan-g-poly (acrylamide): microwave-assisted synthesis, characterization and in vitro release behaviour. Carbohydr Polym 76:261–267

    Article  CAS  Google Scholar 

  3. Sinha VR, Kumria R (2001) Polysaccharides in colon-specific drug delivery. Int J Pharm 224:19–38

    Article  CAS  Google Scholar 

  4. Dey RK, Tiwary GS, Patnaik T, Jha U (2011) Controlled release of 5-aminosalicylic acid from a new pH responsive polymer derived from tamarind seed polysaccharide, acrylic acid, and polyamidoamine. Polym Bull 66:583–598

    Article  CAS  Google Scholar 

  5. Coviello T, Matricardi P, Marianecci C, Alhaique F (2007) Polysaccharide hydrogels for modified release formulations. J Control Release 119:5–24

    Article  CAS  Google Scholar 

  6. Sen G, Pal S (2009) Microwave initiated synthesis of polyacrylamide grafted carboxymethylstarch (CMG-g-PAM): application as a novel matrix for sustained drug release. Int J Biol Macromol 45:48–55

    Article  CAS  Google Scholar 

  7. Giri A, Ghosh T, Panda AB, Pal S, Bandyopadhyay A (2012) Tailoring carboxymethyl guargum hydrogel with nanosilica for sustained transdermal release of diclofenac sodium. Carbohydr Polym 87:1532–1538

    Article  CAS  Google Scholar 

  8. Vijan V, Kaity S, Biswas S, Isaac J, Ghosh A (2012) Microwave assisted synthesis and characterization of acrylamide grafted gellan, application in drug delivery. Carbohydr Polym 90:496–506

    Article  CAS  Google Scholar 

  9. Rana V, Rai P, Tiwari AK, Singh RS, Kennedy JF, Knill CJ (2011) Modified gums: approaches and applications in drug delivery. Carbohydr Polym 83:1031–1047

    Article  CAS  Google Scholar 

  10. Mundargi RC, Patil SA, Aminabhavi TM (2007) Evaluation of acrylamide-grafted-xanthan gum copolymer matrix tablets for oral controlled delivery of antihypertensive drugs. Carbohydr Polym 69:130–141

    Article  CAS  Google Scholar 

  11. Deshmukh SR, Singh RP (1987) Drag reduction effectiveness, shear stability and biodegradation resistance on guar gum-based graft copolymers. J Appl Polym Sci 33:1963–1975

    Article  CAS  Google Scholar 

  12. Pal S, Mal D, Singh RP (2007) Synthesis and characterization of cationic guar gum: a high performance flocculating agent. J Appl Polym Sci 105:3240–3245

    Article  CAS  Google Scholar 

  13. Singh RP, Pal S, Mal D (2006) A high performance flocculating agent and viscosifier based on cationic guar gum. Macromol Symp 242:227–234

    Article  CAS  Google Scholar 

  14. Singh V, Tiwari A, Tripathy DN, Sanghi R (2004) Microwave assisted synthesis of guar-g-polyacrylamide. Carbohydr Polym 58:1–6

    Article  CAS  Google Scholar 

  15. Pal S (2009) Carboxymethyl guar: its synthesis and macromolecular characterization. J Appl Polym Sci 111:2630–2636

    Article  CAS  Google Scholar 

  16. Brostow W, Lobland HEL, Reddy T, Singh RP (2007) Lowering mechanical degradation of drag reducers in turbulent flow. J Mater Res 22:56–60

    Article  CAS  Google Scholar 

  17. Wang L, Zhang LM (2009) Viscoelastic characterization of a new guar gum derivative containing anionic carboxymethyl and cationic 2-hydroxy-3-(trimethylammonio) propyl substituents. Ind Crops Prod 29:524–529

    Article  CAS  Google Scholar 

  18. Singh RP, Nayak BR, Biswal DR, Tripathy T, Banik K (2003) Biobased polymeric flocculants for industrial effluent treatment. Mater Res Innovat 7:331–340

    Article  CAS  Google Scholar 

  19. Ghosh S, Sen G, Jha U, Pal S (2010) Novel biodegradable polymeric flocculant based on polyacrylamide grafted tamarind kernel polysaccharide. Biores Tech 101:9638–9644

    Article  CAS  Google Scholar 

  20. Singh RP, Pal S, Krishnamoorthy S, Adhikary P, Ali SK (2009) High-technology materials based on modified polysaccharides. Pure Appl Chem 81:525–547

    Article  CAS  Google Scholar 

  21. Stannett SV (1981) Grafting. Radiat Phys Chem 18:215–222

    CAS  Google Scholar 

  22. Schwab E, Stannett V, Rakowitz DH, Magrane JK (1962) Paper grafted with vinyl monomers using the ceric ion method. Tappi 45:390–400

    CAS  Google Scholar 

  23. Duke FR, Forist AA (1949) The theory and kinetics of specific oxidation III. The cerate-2-3-butanediol reaction in nitric acid solution. J Am Chem Soc 71:2790–2792

    Article  CAS  Google Scholar 

  24. Duke FR, Bremer RF (1951) The theory and kinetics of specific oxidation IV. The cerate 2, s-butanediol reactions in perchlorate solutions. J Am Chem Soc 73:5179–5181

    Article  CAS  Google Scholar 

  25. Mino G, Kaizarman S (1958) A new method for the preparation of graft copolymers. Polymerization initiated by ceric ion redox systems. J Polym Sci Part A: Polym Chem 31:242–243

    Google Scholar 

  26. Iwakura Y, Kurosaki T, Imai Y (1965) Graft copolymerization onto cellulose by the ceric ion method. J Polym Sci Part A: Polym Chem 3:1185–1193

    CAS  Google Scholar 

  27. Kurlyankina VI, Molotokov VA, Koz’mina PO, Khripunov AK, Shtennikova IN (1969) On the mechanism of grafting chains of synthetic polymers to cellulose using salts of transition metals. Eur Polym J 5:441–445

    Article  Google Scholar 

  28. Kurlyankina VI, Koz’mina PO, Khripunov AK, Molotkov VA, Novoselova TD (1967) Complexing of cerium with cellulose and other hydroxyl containing compounds. Dokl Akad Nauk USSR 172:344–350

    Google Scholar 

  29. Kulkarni AY, Meheta PC (1967) Oxidation of cellulose by ceric ions. J Appl Polym Sci B Polym Lett 5:209–215

    Article  CAS  Google Scholar 

  30. Kulkarni AY, Meheta PC (1968) Ceric ion-induced redox polymerization of acrylonitrile on cellulose. J Appl Polym Sci 12:1321–1342

    Article  CAS  Google Scholar 

  31. Ogiwara YO, Ogiwara YV, Kubota H (1968) The mechanism of consumption of ceric salt with cellulosic materials. J Polym Sci Part A: Polym Chem 6:1489–1499

    Article  CAS  Google Scholar 

  32. Nayak BR, Singh RP (2001) Development of graft copolymer flocculating agents based on hydroxypropyl guar gum and acrylamide. Eur Polym J 81:1776–1785

    CAS  Google Scholar 

  33. Gupta KC, Sahoo S (2001) Grafting of acrylonitrile and methyl methacrylate from their binary mixtures on cellulose using ceric ions. J Appl Polym Sci 79:767–778

    Article  CAS  Google Scholar 

  34. Mino G, Kaizerman S, Rasmussen E (1959) The oxidation of pinacol by ceric sulfate. J Am Chem Soc 81:1494–1496

    Article  CAS  Google Scholar 

  35. Hinz HL, Johnson DC (1967) The mechanism of oxidation of cyclic alcohols. J Org Chem 32:556–564

    Article  Google Scholar 

  36. Duke R (1947) The theory and kinetics of specific oxidation I. The trivalent manganese-oxalate reaction. J Am Chem Soc 69:2885–2888

    Article  CAS  Google Scholar 

  37. Singh H, Thampy RT, Chipalkatti VB (1965) Graft copolymerization of vinyl monomers initiated by manganese sulfate–sulfuric acid. J Polym Sci Part A: Polym Chem 3:4289–4293

    CAS  Google Scholar 

  38. Mehrotra R, Ranby B (1977) Graft copolymerization onto starch. I. Complexes of Mn3+ as initiators. J Appl Polym Sci 21:1647–1654

    Article  CAS  Google Scholar 

  39. Mehrotra R, Ranby B (1977) Graft copolymerization onto starch. II. Grafting of acrylonitrile to granular native potato starch by manganese pyrophosphate initiation. Effect of reaction conditions on grafting parameters. J Appl Polym Sci 21:3407–3415

    Article  CAS  Google Scholar 

  40. Mehrotra R, Ranby B (1978) Graft copolymerization onto starch. III. Grafting of acrylonitrile to gelatinized potato starch by manganese pyrophosphate initiation. J Appl Polym Sci 22:2991–3001

    Article  CAS  Google Scholar 

  41. Mehrotra R, Ranby B (1978) Graft copolymerization onto starch. IV. Grafting of methyl methacrylate to granular native potato starch by manganese pyrophosphate initiation. J Appl Polym Sci 22:3003–3010

    Article  CAS  Google Scholar 

  42. Brockway CE, Moser KB (1963) Grafting of poly (methyl methacrylate) to granular corn starch. J Polym Sci Part A: Polym Chem 1:1025–1039

    Google Scholar 

  43. Brockway CE (1964) Efficiency and frequency of grafting of methyl methacrylate to granular corn starch. J Polym Sci Part A: Polym Chem 2:3721–3731

    Google Scholar 

  44. Kimura S, Takitani T, Imoto M (1962) Vinyl polymerization (LXIV) graft copolymerization of vinyl monomers to starch. Bull Chem Soc Jpn 35:2012–2019

    Article  CAS  Google Scholar 

  45. Imoto M, Morita E, Ouchi T (1980) Vinyl polymerisation (CCCLXXVIII) radical polymerization of methyl methacrylate with starch in aqueous solution of Cu (II) ion. J Polym Sci Polym Symp 68:1–11

    Article  Google Scholar 

  46. Katai AA, Schuech C (1966) Mechanism of ozone attack on α-methyl glucoside and cellulosic materials. J Polym Sci part A: Polym Chem 4:2683–2703

    Article  CAS  Google Scholar 

  47. Nayak PL, Lenka S, Pati NC (1979) Grafting vinyl monomers onto silk fibers. II. Graft copolymerization of methyl methacrylate onto silk by hexavalent chromium ion. J Appl Polym Sci 23:1345–1354

    Article  CAS  Google Scholar 

  48. Nayak PL, Lenka S, Pati NC (1979) J Polym Sci Polym Chem Ed 17:3425–3430

    Article  CAS  Google Scholar 

  49. Samal RK, Mohanty TR, Nayak PL (1967) J Macromol Sci Chem A 10:1239–1245

    Google Scholar 

  50. Mishra MK, Tripathy AK, Lenka S, Nayak PL (1981) Grafting vinyl monomers onto cellulose. V. Graft copolymerization of methyl methacrylate onto cellulose using a hexavalent chromium ion. J Appl Polym Sci 26:2769–2771

    Article  CAS  Google Scholar 

  51. Lenka S, Nayak PL, Mishra MK (1980) Grafting vinyl monomers onto cellulose. I. Graft copolymerization of methyl methacrylate onto cellulose using quinquevalent vanadium ion. J Appl Polym Sci 25:1323–1333

    Article  CAS  Google Scholar 

  52. Mohanty AK, Patnaik S, Singh BC, Misra M (1989) Graft copolymerization of acrylonitrile onto acetylated jute fibers. J Appl Polym Sci 37:1171–1181

    Article  CAS  Google Scholar 

  53. Huang RYM, Immergut B, Immergut EH, Rapson WH (1963) Grafting vinyl polymers onto cellulose by high energy radiation. I. High energy radiation-induced graft copolymerization of styrene onto cellulose. J Polym Sci Part A: Polym Chem 1:1257–1270

    CAS  Google Scholar 

  54. Hebeish A, Mehta PC (1968) Grafting of acrylonitrile to different cellulosic materials by high-energy radiation. Textile Res J 38:1070–1075

    Article  CAS  Google Scholar 

  55. Geresh S, Gdalevsky GY, Gilboa I, Voorspoels J, Remon JP, Kost J (2004) Bioadhesive grafted starch copolymers as platforms for peroral drug delivery: a study of theophylline release. J Control Release 94:391–399

    Article  CAS  Google Scholar 

  56. Shiraishi N, Williams JL, Stannett V (1982) The radiation grafting of vinyl monomers to cotton fabrics—I. Methacrylic acid to terry cloth towelling. Radiat Phys Chem 19:73–78

    CAS  Google Scholar 

  57. Sharma RK, Misra BN (1981) Grafting onto wool 22. Radiation induced grafted copolymerization of methyl methacrylate in water-methanol system. Polym Bullet 6:183–188

    Article  CAS  Google Scholar 

  58. Carenza M (1992) Recent achievements in the use of radiation polymerization and grafting for biomedical applications. Radiat Phys Chem 39:485–493

    CAS  Google Scholar 

  59. Wang JP, Chen YZ, Zhang SJ, Yu HQ (2008) A chitosan-based flocculant prepared with gamma-irradiation-induced grafting. Biores Tech 99:3397–3402

    Article  CAS  Google Scholar 

  60. Madani M (2011) Structure, optical and thermal decomposition characters of LDPE graft copolymers synthesized by gamma irradiation. Curr Appl Phys 11:70–76

    Article  Google Scholar 

  61. Adams S (1983) Recent advances in radiation chemistry of carbohydrates. In: Elias PS, Cohen AJ (eds) Recent advances in food irradiation. Elsevier Biomedical Press, Amsterdam, p 149

    Google Scholar 

  62. Edimecheva IP, Kisel RM, Shadyro OI, Kazem K, Murase H, Kagiya T (2005) Homolytic cleavage of the O-glycoside bond in carbohydrates: a steady-state radiolysis study. J Radiat Res (Tokyo) 46:319–324

    Article  CAS  Google Scholar 

  63. Grubb DT (1974) Radiation damage and electron microscopy of organic polymers. J Mater Sci 9:1715–1736

    Article  CAS  Google Scholar 

  64. Fink D (2004) Fundamentals of ion-irradiated polymers, vol 66. Springer, New York, NY

    Book  Google Scholar 

  65. Pietraner MSA, Narvaiz P (2001) Examination of some protective conditions on technological properties of irradiated food grade polysaccharides. Radiat Phys Chem 60:195–201

    Article  Google Scholar 

  66. Kim BN, Lee DH, Han DH (2008) Thermal, mechanical and electrical properties on the styrene-grafted and subsequently sulfonated FEP film induced by electron beam. Polym Degr Stab 93:1214–1221

    Article  CAS  Google Scholar 

  67. Dargaville TR, George GA, Hill DJT, Whittaker AK (2003) High energy radiation grafting of fluoropolymers. Prog Polym Sci 28:1355–1376

    Article  CAS  Google Scholar 

  68. Farquet P, Padeste C, Solak HH, Gürsel SA, Scherer GG, Wokaun A (2008) Extreme UV radiation grafting of glycidyl methacrylate nanostructures onto fluoropolymer foils by RAFT-mediated polymerization. Macromolecules 41:6309–6316

    Article  CAS  Google Scholar 

  69. Guilmeau I, Esnouf S, Betz N, Le MA (1997) Kinetics and characterization of radiation-induced grafting of styrene on fluoropolymers. Nucl Instr Meth Phys Res Sec B: Beam Interact Mater Atoms 131:270–275

    Article  CAS  Google Scholar 

  70. Kimura Y, Asano M, Chen J, Maekawa Y, Katakai R, Yoshida M (2008) Influence of grafting solvents on the properties of polymer electrolyte membranes prepared by γ-ray pre irradiation method. Radiat Phys Chem 77:864–870

    Article  CAS  Google Scholar 

  71. Ameduri B, Boutevin B (2004) Well-architectured fluoropolymers. Elsevier, Amsterdam

    Google Scholar 

  72. Gubler L, Slaski M, Wallasch F, Wokaun A, Scherer GG (2009) Radiation grafted fuel cell membranes based on co-grafting of α-methylstyrene and methacrylonitrile into a fluoropolymer base film. J Mem Sci 339:68–77

    Article  CAS  Google Scholar 

  73. Lappan U, Geißler U, Uhlmann S (2005) Radiation-induced grafting of styrene into radiation-modified fluoropolymer films. Nucl Instr Meth Phys Res Sec B: Beam Interact Mater Atoms 236:413–419

    Article  CAS  Google Scholar 

  74. Chen J, Asano M, Maekawa Y, Yoshida M (2007) Polymer electrolyte hybrid membranes prepared by radiation grafting of p-styryltrimethoxysilane into poly(ethylene-co-tetrafluoroethylene) films. J Mem Sci 296:77–82

    Article  CAS  Google Scholar 

  75. Tzanetakis N, Varcoe JR, Slade RCT, Scott K (2005) Radiation-grafted PVDF anion exchange membrane for salt splitting. Desalination 174:257–265

    Article  CAS  Google Scholar 

  76. Deng J, Wang L, Liu L, Yang W (2009) Developments and new applications of UV-induced surface graft polymerizations. Prog Polym Sci 34:156–193

    Article  CAS  Google Scholar 

  77. Deng H, Xu Y, Chen Q, Wei X, Zhu B (2011) High flux positively charged nanofiltration membranes prepared by UV-initiated graft polymerization of methacrylatoethyl trimethyl ammonium chloride (DMC) onto polysulfone membranes. J Mem Sci 366:363–372

    Article  CAS  Google Scholar 

  78. Hua H, Li N, Wu L, Zhong H, Wu G, Yuan Z, Lin X, Tang L (2008) Anti-fouling ultrafiltration membrane prepared from polysulfone-graft-methyl acrylate copolymers by UV-induced grafting method. J Envir Sci 20:565–570

    Article  CAS  Google Scholar 

  79. Shanmugharaj AM, Kim JK, Ryu SH (2006) Modification of rubber surface by UV surface grafting. Appl Surf Sci 252:5714–5722

    Article  CAS  Google Scholar 

  80. Zhu Z, Kelley MJ (2005) Grafting onto poly (ethylene terephthalate) driven by 172 nm UV light. Appl Surf Sci 252:303–310

    Article  CAS  Google Scholar 

  81. Deng J, Yang W (2005) Grafting copolymerization of styrene and maleic anhydride binary monomer systems induced by UV irradiation. Eur Polym J 41:2685–2629

    Article  CAS  Google Scholar 

  82. Thaker MD, Trivedi HC (2005) Ultraviolet-radiation-induced graft copolymerization of methyl acrylate onto the sodium salt of partially carboxymethylated guar gum. J Appl Polym Sci 97:1977–1986

    Article  CAS  Google Scholar 

  83. Odian G (2002) principles of polymerization, 3rd edn. Wiley, New York, NY

    Google Scholar 

  84. Sen G, Kumar R, Ghosh S, Pal S (2009) A novel polymeric flocculant based on polyacrylamide grafted carboxymethylstarch. Carbohydr Polym 77:822–831

    Article  CAS  Google Scholar 

  85. Grassi M, Grassi G (2005) Mathematical modelling and controlled drug delivery: matrix systems. Curr Drug Deliv 2:97–116

    Article  CAS  Google Scholar 

  86. Langer RS, Wise DL (eds) (1984) Medical applications of controlled release, applications and evaluation, vol I and II. CRC Press, Boca Raton, FL

    Google Scholar 

  87. Al-Saidan SM, Krishnaiah YSR, Satyanarayana V, Rao GS (2005) In vitro and in vivo evaluation of guar gum-based matrix tablets of rofecoxib for colonic drug delivery. Curr Drug Deliv 2:155–163

    Article  CAS  Google Scholar 

  88. Krishnaiah YSR, Muzib YI, Bhaskar P, Satyanarayana V, Latha K (2003) Pharmacokinetic evaluation of guar gum-based colon-targeted drug delivery systems of tinidazole in healthy human volunteers. Drug Deliv 10:263–268

    Article  CAS  Google Scholar 

  89. Krishnaiah YS, Satyanarayana V, Dinesh Kumar B, Karthikeyan RS (2002) In vitro drug release studies on guar gum-based colon targeted oral drug delivery systems of 5-fluorouracil. Eur J Pharm Sci 16:185–192

    Article  CAS  Google Scholar 

  90. Tuğcu-Demiröz F, Acartürk F, Takka S, Konuş-Boyunağa K (2004) In-vitro and in-vivo evaluation of mesalazine-guar gum matrix tablets for colonic drug delivery. J Drug Target 12:105–112

    Article  CAS  Google Scholar 

  91. Rama Prasad YV, Krishnaiah YSR, Satyanarayana S (1998) In vitro evaluation of guar gum as a carrier for colon-specific drug delivery. J Control Release 51:281–287

    Article  Google Scholar 

  92. Krishnaiah YSR, Indira MY, Bhaskar P (2003) In vivo evaluation of guar gum-based colon-targeted drug delivery systems of ornidazole in healthy human volunteers. J Drug Target 11:109–115

    Article  CAS  Google Scholar 

  93. Krishnaiah YSR, Raju PV, Kumar BD, Satyanarayana V, Karthikeyan RS, Bhaskar P (2003) Pharmacokinetic evaluation of guar gum-based colon-targeted drug delivery systems of mebendazole in healthy volunteers. J Control Release 88:95–103

    Article  CAS  Google Scholar 

  94. Krishnaiah YSR, Satyanarayana S, Rama Prasad YV, Narasimha RS (1998) Gamma scintigraphic studies on guar gum matrix tablets for colonic drug delivery in healthy human volunteers. J Control Release 55:245–252

    Article  CAS  Google Scholar 

  95. Tuğcu-Demiröz F, Acartürk F, Takka S, Konuş-Boyunağa Ö (2007) Evaluation of alginate based mesalazine tablets for intestinal drug delivery. Eur J Pharm Biopharm 67:491–497

    Article  CAS  Google Scholar 

  96. Miyazaki S, Nakayama A, Oda M, Takada M, Attwood D (1994) Chitosan and sodium alginate based bioadhesive tablets for intraoral drug delivery. Biol Pharm Bull 17:745–747

    Article  CAS  Google Scholar 

  97. Kim MS, Kim JS, Hwang SJ (2007) The effect of sodium alginate on physical and dissolution properties of Surelease-matrix pellets prepared by a novel pelletizer. Chem Pharm Bull (Tokyo) 55:1631–1634

    Article  CAS  Google Scholar 

  98. Al-Saidan SM, Krishnaiah YSR, Satyanarayana V, Bhaskar P, Karthikeyan RS (2004) Pharmacokinetic evaluation of guar gum-based three-layer matrix tablets for oral controlled delivery of highly soluble metoprolol tartrate as a model drug. Eur J Pharm Biopharm 58:697–703

    Article  CAS  Google Scholar 

  99. Krishnaiah YSR, Satyanarayana S, Rama Prasad YV (1999) Studies of guar gum compression-coated 5-aminosalicylic acid tablets for colon-specific drug delivery. Drug Dev Ind Pharm 25:651–657

    Article  CAS  Google Scholar 

  100. Krishnaiah YSR, Karthikeyan RS, GouriSankar V, Satyanarayana V (2002) Three-layer guar gum matrix tablet formulations for oral controlled delivery of highly soluble trimetazidine dihydrochloride. J Control Release 81:45–56

    Article  CAS  Google Scholar 

  101. Momin M, Pundarikakshudu K (2004) In vitro studies on guar gum based formulation for the colon targeted delivery of Sennosides. J Pharm Sci 7:325–331

    CAS  Google Scholar 

  102. Alvarez-Manceñido F, Landin M, Martínez-Pacheco R (2008) Konjac glucomannan/xanthan gum enzyme sensitive binary mixtures for colonic drug delivery. Eur J Pharm Biopharm 69:573–581

    Article  CAS  Google Scholar 

  103. Wang W, Wang A (2009) Preparation, characterization and properties of superabsorbent nanocomposites based on natural guar gum and modified rectorite. Carbohydr Polym 77:891–897

    Article  CAS  Google Scholar 

  104. Rodrigues A, Emeje M (2012) Recent applications of starch derivatives in nanodrug delivery. Carbohydr Polym 87:987–994

    Article  CAS  Google Scholar 

  105. Prabaharan M, Gong S (2008) Novel thiolated carboxymethyl chitosan-g-b-cyclodextrin as mucoadhesive hydrophobic drug delivery carriers. Carbohydr Polym 73:117–125

    Article  CAS  Google Scholar 

  106. Wang LC, Chen XG, Zhong DY, Xu QC (2007) Study on poly (vinyl alcohol)/ carboxymethyl-chitosan blend film as local drug delivery system. J Mater Sci Mater Med 18:1125–1133

    Article  CAS  Google Scholar 

  107. Reddy T, Tammishetti S (2002) Gastric resistant microbeads of metal ion cross-linked carboxymethyl guar gum for oral drug delivery. J Microencaps 19:311–318

    Article  CAS  Google Scholar 

  108. Du J, Zhang S, Sun R, Zhang LF, Xiong CD, Peng YX (2005) Novel polyelectrolyte carboxymethyl konjac glucomannan-chitosan nanoparticles for drug delivery. II. Release of albumin in vitro. J Biomed Mater Res B: Appl Biomater 72:299–304

    Google Scholar 

  109. Du J, Sun R, Zhang S, Zhang LF, Xiong CD, Peng YX (2005) Novel polyelectrolyte carboxymethyl konjac glucomannan-chitosan nanoparticles for drug delivery. I. Physicochemical characterization of the carboxymethyl konjac glucomannan-chitosan nanoparticles. Biopolymers 78:1–8

    Article  CAS  Google Scholar 

  110. Efentakis M, Koligliati S, Vlachou M (2006) Design and evaluation of a dry coated drug delivery system with an impermeable cup, swellable top layer and pulsatile release. Int J Pharm 311:147–156

    Article  CAS  Google Scholar 

  111. Liang XF, Wang HJ, Luo H, Tian H, Zhang BB, Hao LJ, Teng JI, Chang J (2008) Characterization of novel multifunctional cationic polymeric liposomes formed from octadecyl quaternized carboxymethyl chitosan/cholesterol and drug encapsulation. Langmuir 24:7147–7153

    Article  CAS  Google Scholar 

  112. Pal K, Banthia AK, Majumdar DK (2006) Development of carboxymethyl cellulose acrylate for various biomedical applications. Biomed Mater 1:85–91

    Article  CAS  Google Scholar 

  113. Bajpai AK, Mishra A (2008) Carboxymethyl cellulose (CMC) based semi-IPNs as carriers for controlled release of ciprofloxacin: an in-vitro dynamic study. J Mater Sci Mater Med 19:2121–2130

    Article  CAS  Google Scholar 

  114. Sen G, Pal S (2009) A novel polymeric biomaterial based on carboxymethylstarch 2130. and its application in controlled drug release. J Appl Polym Sci 114:2798–2805

    Article  CAS  Google Scholar 

  115. Wise LD (2000) Handbook of pharmaceutical controlled release technology. Dekker, New York,NYl

    Google Scholar 

  116. Kydonieus A (1992) Treatise on controlled drug delivery. Dekker, New York, NY

    Google Scholar 

  117. Sumathi S, Roy AK (2002) Release behaviour of drugs from tamarind seed polysaccharide tablets. J Pharm Sci 5:12–18

    CAS  Google Scholar 

  118. Singh B, Chauhan N (2009) Modification of psyllium polysaccharide for use in oral insulin delivery. Food Hydrocolloids 23:928–935

    Article  CAS  Google Scholar 

  119. Hsieh DS (ed) (1987) Controlled release systems: fabrication technology, vol I. CRC Press, Inc., Boca Raton, FL

    Google Scholar 

  120. Ghaderi R, Artusson P, Carlfors J (2000) A new method for preparing biodegradable microparticles and entrapment of hydrocortisone in -PLG microparticles using supercritical fluids. Eur J Pharm Sci 10:1–9

    Article  CAS  Google Scholar 

  121. Falk R, Randolph TW, Meyer JD, Kelly RM, Manning MC (1997) Controlled release of ionic compounds from poly (L-lactide) microspheres produced by precipitation with a compressed antisolvent. J Control Release 44:77–85

    Article  CAS  Google Scholar 

  122. Pal S, Sen G, Mishra S, Dey RK, Jha U (2008) Carboxymethyl tamarind: synthesis, characterization and its application as novel drug-delivery agent. J Appl Polym Sci 110:392–400

    Article  CAS  Google Scholar 

  123. Sen G, Pal S (2009) Microwave initiated synthesis of polyacrylamide grafted carboxymethylstarch (CMS-g-PAM): application as a novel matrix for sustained drug release. Int J Bio Macromol 45:48–55

    Article  CAS  Google Scholar 

  124. USP (2003) General chapter <711 > Dissolution, USP 27—The United States Pharmacopeia Convention, Inc., Rockville, MD, p 2303.

    Google Scholar 

  125. Friend DR (1991) Colon-specific drug delivery. Adv Drug Deliv Rev 7:149–199

    Article  CAS  Google Scholar 

  126. Pal S, Ghorai S, Dash MK, Ghosh S, Udayabhanu G (2011) Flocculation properties of polyacrylamide grafted carboxymethyl guar gum (CMG-g-PAM) synthesised by conventional and microwave assisted method. J Hazard Mat 192:1580–1588

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors are grateful to Indian School of Mines, Dhanbad, India, for providing necessary facilities to carry out the reported drug delivery study. The authors also earnestly acknowledge the financial support from University Grants Commissions, New Delhi, India, in form of a research grant [No. 36-59/2008 (SR)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sagar Pal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pal, S., Das, R. (2013). Polysaccharide-Based Graft Copolymers for Biomedical Applications. In: Kalia, S., Sabaa, M. (eds) Polysaccharide Based Graft Copolymers. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36566-9_9

Download citation

Publish with us

Policies and ethics