Skip to main content

Gum-g-Copolymers: Synthesis, Properties, and Applications

  • Chapter
  • First Online:
Polysaccharide Based Graft Copolymers

Abstract

With the increasing concerns on environmental problems, the petroleum-based synthetic polymers gradually highlight their disadvantages and threats to the modern world from the perspective of energy source, resource, and environment. So the naturally renewable polymers have received great developments by virtue of their unique environmental and commercial advantages. The commonly cognitive natural polymers are mainly cellulose, starch, and chitosan, which were intensively researched and got extensive applications in food, fine chemicals, soft-tissue and pharmaceutical engineering, biomedical engineering, artificial sensors, etc. as a substitution of synthetic polymers. But these natural polymers fail to meet all requirements in modern industrial application because their boundedness in structure, solubility, colloidal properties, machinability, and so on. Gums have showed variety of structure and property due to their abundant sources and have gained enormous attention as new families of natural polymers. The original forms of gums have excellent suspension, viscosity, rheological properties, stimuli responsivity, flocculation, and adsorption performance besides the common renewable, biodegradable, nontoxic, and biocompatible characteristics. The usability can be further enhanced through the simple derivatization or graft copolymerization, and the drawbacks of gums such as poor rotting resistance can be improved. Compared with conventional derivatization reaction, graft copolymerization is especially important and effective because it can introduce various functional groups and increase the molecular weight of polymers. The graft copolymerization of gums with various monomers can enhance the intrinsic properties and can also bring new properties that raw gums do not have. The gum-g-copolymers usually showed better thermo- and degradation-resistant properties, high-viscous and shear-resistant properties, stimuli-responsive properties, electric properties, etc. and have been widely applied in many areas, such as drilling additives, flocculating agent, drug delivery carriers, adsorption of toxic heavy metals and dyes, water-saving materials, sand-binding materials, daily chemicals, thickener, electrical biomaterials, and macromolecular surfactants. Thus, this chapter detailedly introduced the types, structure, and derivatives of gums; the synthesis method of graft copolymer; the properties of graft copolymer; and their application domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AG:

Acacia gum

AMPS:

2-Acrylamido-2-methyl-1-propane sulfonic acid

APS:

Ammonium persulfate

CAN:

Cerium(IV) ammonium nitrate

CAS:

Ceric ammonium sulfate

CG:

Cashew gum

CGG:

Cationic guar gum

CHPTAC:

3-Chloro-2-hydroxypropyltrimethylammonium chloride

CRSG:

Cassia reticulata seed gum

CTG:

Cassia tora gum

DDMC:

Diallyldimethylammonium chloride

FET:

Final decomposition temperature

GG:

Guar gum

GGT:

Gum ghatti

H2O2 :

Hydrogen peroxide

IDSG:

Ipomoea dasysperma seed gum

IHSG:

Ipomoea hederacea seed gum

IPSG:

Ipomoea palmata seed gum

k-CGN:

k-Carrageenan

KG:

Konjac gum

KGM:

Konjac glucomannan

KPS:

Potassium persulfate

LBG:

Locust bean gum

LGSG:

Leucaena glauca seed gum

MW:

Microwave

P4V:

Poly(4-vinylpyridine)

PAA:

Poly(acrylic acid)

PACA:

Poly(2-acrylamidoglycolic acid)

PAM:

Poly(acrylamide)

PAN:

Poly(acrylonitrile)

PANI:

Poly(aniline)

PCMGG:

Partially carboxymethylated guar gum

PDAM:

Poly(N,N-dimethylacrylamide)

PEA:

Poly(ethylacrylate)

PEMA:

Poly(ethyl methacrylate)

PEO:

Poly(ethylene oxide)

PGMA:

Poly(glycidyl methacrylate)

PIA:

Poly(itaconic acid)

PMA:

Poly(methacrylic acid)

PMAD:

Poly(methacrylamide)

PMMA:

Poly(methyl methacrylate)

PNVF:

Poly(N-vinyl formamide)

PNVP:

Poly(N-vinyl-2-pyrrolidone)

PPO:

Poly(propylene oxide)

PSY:

Psyllium

SA:

Sodium alginate

SD:

Sodium disulfite

TGG:

Tragacanth gum

TK:

Tamarind kernel

UV:

Ultraviolet

XG:

Xanthan gum

XGC:

Xyloglucan

References

  1. Whistler RL, BeMiller JN (1993) Industrial gums: polysaccharides and their derivatives, 3rd edn. Academic, San Diego, CA

    Google Scholar 

  2. Amjad Z (1998) Water soluble polymers solution properties and applications. Kluwer Academic Publishers, Boston, MA

    Google Scholar 

  3. Phillips GO, Williams PA (2000) Handbook of hydrocolloids. Woodhead Publishing, Cambridge

    Google Scholar 

  4. Koocheki A, Mortazavi SA, Shahidi F, Razavi SMA, Taherian AR (2009) Rheological properties of mucilage extracted from Alyssum homolocarpum seed as a new source of thickening agent. J Food Eng 91:490–496

    Article  CAS  Google Scholar 

  5. Ibrahima NA, Abo-Shosha MH, Allam EA, El-Zairy EM (2010) New thickening agents based on tamarind seed gum and karaya gum polysaccharides. Carbohydr Polym 81:402–408

    Article  CAS  Google Scholar 

  6. Mahmud HS, Oyi AR, Allagh T (2009) Evaluation of the suspending properties of khya senegalensis gum in paracetamol suspensions. Niger J Pharm Sci 8:128–134

    Google Scholar 

  7. Al-Hamadani YAJ, Yusoff MS, Umar M, Bashir MJK, Nordin Adlan M (2011) Application of psyllium husk as coagulant and coagulant aid in semi-aerobic landfill leachate treatment. J Hazard Mater 190:582–587

    Article  CAS  Google Scholar 

  8. Hamed SB, Belhadri M (2009) Rheological properties of biopolymers drilling fluids. J Petrol Sci Eng 67:84–90

    Article  CAS  Google Scholar 

  9. Khalil M, Jan BM (2012) Herschel-Bulkley rheological parameters of a novel environmentally friendly lightweight biopolymer drilling fluid from xanthan gum and starch. J Appl Polym Sci 124:595–606

    Article  CAS  Google Scholar 

  10. Gong HH, Liu MZ, Zhang B, Cui DP, Gao CM, Ni BL, Chen JC (2011) Synthesis of oxidized guar gum by dry method and its application in reactive dye printing. Int J Biol Macromol 49:1083–1091

    Article  CAS  Google Scholar 

  11. Nakauma M, Funami T, Noda S, Ishihara S, Al-Assaf S, Nishinari K, Phillips GO (2008) Comparison of sugar beet pectin, soybean soluble polysaccharide, and gum arabic as food emulsifiers. 1. Effect of concentration, pH, and salts on the emulsifying properties. Food Hydrocolloid 22:1254–1267

    Article  CAS  Google Scholar 

  12. Jian HL, Zhu LW, Zhang WM, Sun DF, Jiang JX (2012) Galactomannan (from Gleditsia sinensis Lam.) and xanthan gum matrix tablets for controlled delivery of theophylline: in vitro drug release and swelling behavior. Carbohydr Polym 87:2176–2182

    Article  CAS  Google Scholar 

  13. Fabre B, Florini-Puybaret C (2011) Cosmetic composition containing a locust bean gum hydrolysate. US Patent No. US2011/0256087A1

    Google Scholar 

  14. Sundar S, Kundu J, Kundu SC (2010) Biopolymeric nanoparticles. Sci Technol Adv Mater 11:014104, 13 pp

    Article  CAS  Google Scholar 

  15. Yu TJ, Wu BC, Tang BH, Lu YH (2011) Study on the application of guar gum in papermaking wet end (Chinese). Paper Chem 23:44–47

    CAS  Google Scholar 

  16. Battaerd HAJ, Treglar GW (1967) Graft copolymers. Wiley, New York, NY

    Google Scholar 

  17. Jenkins D, Hudson S (2001) Review of vinyl graft copolymerization featuring recent advances toward controlled radical-based reactions and illustrated with chitin/chitosan trunk polymers. Chem Rev 101:3245–3273

    Article  CAS  Google Scholar 

  18. Roy D, Semsarilar M, Guthrie JT, Perrier S (2009) Cellulose modification by polymer grafting: a review. Chem Soc Rev 38:2046–2064

    Article  CAS  Google Scholar 

  19. Kalia S, Kaith BS, Kaur I (2011) Cellulose fibers: bio- and nano-polymer composites-green chemistry and technology. Springer, Berlin

    Book  Google Scholar 

  20. Bhattacharya A, Rawlins JW, Ray P (2009) Polymer grafting and crosslinking. Wiley, Hoboken, NJ

    Google Scholar 

  21. Singh RP (1995) In: Mark JE, Fai TJ (eds) Polymers and other advanced materials: emerging technologies and business opportunities. Plenum, New York, NY

    Google Scholar 

  22. Singh RP, Karmakar GP, Rath SK, Karmakar NC, Tripathy T, Panda J, Kanan K, Jain SK, Lan NT (2000) Biodegradable drag reducing agents and flocculants based on polysaccharides: materials and applications. Polym Eng Sci 40:46–60

    Article  CAS  Google Scholar 

  23. Singh RP, Karmakar GP, Rath SK, Karmakar NC, Tripathy T, Pandey SR, Kanan K, Jain SK, Lan NT (2000) Novel biodegradable flocculants based on polysaccharides. Curr Sci 78:798–803

    CAS  Google Scholar 

  24. Sanghi R, Bhattacharya B, Singh V (2006) Use of Cassia javahikai seed gum and gum-g-polyacrylamide as coagulant aid for the decolorization of textile dye solutions. Bioresour Technol 97:1259–1264

    Article  CAS  Google Scholar 

  25. Singh V, Tiwari A, Tripathi DN, Sanghi R (2005) Poly(acrylonitrile) grafted Ipomoea seed-gums: a renewable reservoir to industrial gums. Biomacromolecules 6:453–456

    Article  CAS  Google Scholar 

  26. Tiwari A, Singh V (2008) Microwave-induced synthesis of electrical conducting gum acacia-graft-polyaniline. Carbohydr Polym 74:427–434

    Article  CAS  Google Scholar 

  27. Whistler RL (1969) The encyclopedia of polymer science and technology, vol 11. Wiley, New York, Ny, p 416

    Google Scholar 

  28. Prado BM, Kim S, Ozen BF, Mauer LT (2005) Differentiation of carbohydrate gums and mixtures using fourier transform infrared spectroscopy and chemometrics. J Agric Food Chem 53:2823–2829

    Article  CAS  Google Scholar 

  29. Turk SŠ, Schneider R (2000) Printing properties of a high substituted guar gum and its mixture with alginate. Dyes Pigm 47:269–275

    Article  CAS  Google Scholar 

  30. Krishnaiah YSR, Karthikeyen RS, Gouri Sankar V, Satyanarayana V (2002) Three-layer guar gum matrix tablet formulations for oral controlled delivery of highly soluble trimetazidine dihydrochloride. J Control Release 81:45–56

    Article  CAS  Google Scholar 

  31. Wong D, Larabee S, Clifford K, Tremblay J, Friend DR (1997) USP dissolution apparatus III (reciprocating cylinder) for screening of guar-based colonic delivery formulations. J Control Release 47:173–179

    Article  CAS  Google Scholar 

  32. Singh V, Kumaril P, Pandey S, Narayan T (2009) Removal of chromium (VI) using poly(methylacrylate) functionalized guar gum. Bioresour Technol 100(6):1977–1982

    Article  CAS  Google Scholar 

  33. Deshmukh SR, Chaturvedi PN, Singh RP (1985) The turbulent drag reduction by graft copolymers of guargum and polyacrylamide. J Appl Polym Sci 30:4013–4018

    Article  CAS  Google Scholar 

  34. Srivastava A, Tripathy J, Mishra MM, Behari K (2007) Modification of guar gum through grafting of 4-vinyl pyridine using potassium peroxymonosulphate/ascorbic acid redox pair. J Appl Polym Sci 106:1353–1358

    Article  CAS  Google Scholar 

  35. Sanghi R, Bhattacharya B, Singh V (2002) Cassia angustifolia seed gum as an effective natural coagulant for decolourisation of dye solutions. Green Chem 4:252–254

    Article  CAS  Google Scholar 

  36. Sullad AG, Manjeshwar LS, Aminabhavi TM (2010) Novel pH-sensitive hydrogels prepared from the blends of poly(vinyl alcohol) with acrylic acid-graft-guar gum matrixes for isoniazid delivery. Ind Eng Chem Res 49:7323–7329

    Article  CAS  Google Scholar 

  37. Yadav M, Mishra DK, Behari K (2011) Synthesis of partially hydrolyzed graft copolymer (H-partially carboxymethylated guar gum-g-methacrylic acid): a superabsorbing material. Carbohydr Polym 85:29–36

    Article  CAS  Google Scholar 

  38. Wang WB, Wang AQ (2009) Synthesis, swelling behaviors, and slow-release characteristics of a guar gum-g-poly(sodium acrylate)/sodium humate superabsorbent. J Appl Polym Sci 112:2102–2111

    Article  CAS  Google Scholar 

  39. Singh V, Srivastava V, Pandey M, Sethi R, Sanghi R (2003) Ipomoea turpethum seeds: a potential source of commercial gum. Carbohydr Polym 51:357–359

    Article  CAS  Google Scholar 

  40. Rannard SP, Rogers SH, Hunter R (2007) Synthesis of well-defined Locust Bean Gum-graft-copolymers using ambient aqueous atom transfer radical polymerisation. Chem Commun 362–364

    Google Scholar 

  41. Dakiaa PA, Bleckerb C, Roberta C, Watheleta B, Paquot M (2008) Composition and physicochemical properties of locustbeangum extracted from whole seeds by acid or water dehulling pre-treatment. Food Hydrocolloid 22:807–818

    Article  CAS  Google Scholar 

  42. Simõesa J, Nunesb FM, Dominguesa MR, Coimbra MA (2011) Demonstration of the presence of acetylation and arabinose branching as structural features of locustbeangum galactomannans. Carbohydr Polym 86:1476–1483

    Article  CAS  Google Scholar 

  43. Hefnawy HTM, Ramadan MF (2011) Physicochemical characteristics of soy protein isolate and fenugreek gum dispersed systems. J Food Sci Technol 48:371–377

    Article  CAS  Google Scholar 

  44. Saha D, Bhattacharya S (2010) Hydrocolloids as thickening and gelling agents in food: a critical review. J Food Sci Technol 47:587–597

    Article  CAS  Google Scholar 

  45. Somchit MN, Reezal I, Elysha Nur I, Mutali AR (2003) In vitro antimicrobial activity of ethanol and water extracts of Cassia alata. J Ethnopharmacol 84:1–4

    Article  CAS  Google Scholar 

  46. Singh V, Srivastava A, Tiwari A (2009) Structural elucidation, modification and characterization of seedgum from Cassia javahikai seeds: anon-traditional source of industrial gums. Int J Biol Macromol 45:293–297

    Article  CAS  Google Scholar 

  47. Yamada H, Nagai T, Cyong JC, Tomoda YO, Shimizu N, Shimada Y (1985) Relationship between chemical structure and anti-complementary activity of plant polysaccharides. Carbohydr Res 144(15):101–111

    Article  CAS  Google Scholar 

  48. Mann AS, Jain NK, Kharya MD (2007) Evaluation of the suspending properties of Cassia tora mucilage on sulphadimidine suspension. Asian J Exp Sci 21:63–67

    CAS  Google Scholar 

  49. Williams PA, Sworn G (2007) Handbook of industrial water soluble polymers, Chapter 2. Natural thickeners. Wiley, New York, NY

    Book  Google Scholar 

  50. Bajpai UDN, Jain A, Rai S (1990) Grafting of polyacrylamide on to guar gum using K2S2O8 ascorbic acid redox system. J Appl Polym Sci 39:2187–2204

    Article  CAS  Google Scholar 

  51. Kato K, Matsuda K (1969) Studies on the chemical structure of konjac mannan. Agric Biol Chem 33:1446–1453

    Article  CAS  Google Scholar 

  52. Maeda M, Shimahara H, Sugiyama N (1980) Detailed examination of the branched structure of konjac glucomannan. Agric Biol Chem 44:245–252

    Article  CAS  Google Scholar 

  53. Katsuraya K, Okuyama K, Hatanaka K, Oshima R, Satoc T, Matsuzakic K (2003) Constitution of konjacglucomannan: chemical analysis and 13C NMR spectroscopy. Carbohydr Polym 53(2):183–189

    Article  CAS  Google Scholar 

  54. Xu ZL, Yang YH, Jiang YM, Sun YM, Shen YD, Pang J (2008) Synthesis and characterization of konjac glucomannan-graft-polyacrylamide via γ-irradiation. Molecules 13:490–500

    Article  CAS  Google Scholar 

  55. Zhang YQ, Xie BJ, Gan X (2005) Advance in the applications of konjac glucomannan and its derivatives. Carbohydr Polym 60:27–31

    Article  CAS  Google Scholar 

  56. Singh V, Gupta PC (2000) In: Proceeding of the international symposium on trends in medicinal chemistry and biocatalysis, New Delhi, p 76

    Google Scholar 

  57. Arthur MG, Emil NA, James KS (1973) In: Whistler RL (ed) Industrial gums, 2nd edn. Academic, New York, NY

    Google Scholar 

  58. Singh V, Tiwari A, Sanghi R (2005) Studies on K2S2O8/ascorbic acid initiated synthesis of ipomoea dasysperma seed gum-g-poly(acrylonitrile): a potential industrial gum. J Appl Polym Sci 98:1652–1662

    Article  CAS  Google Scholar 

  59. Srivastava A, Behari K (2007) Synthesis and study of metal ion sorption capacity of xanthan gum-g-2-acrylamido-2-methyl-1-propane sulphonic acid. J Appl Polym Sci 104:470–478

    Article  CAS  Google Scholar 

  60. Adhikary P, Singh RP (2004) Synthesis, characterization, and flocculation characteristics of hydrolyzed and unhydrolyzed polyacrylamide grafted xanthan gum. J Appl Polym Sci 94:1411–1419

    Article  CAS  Google Scholar 

  61. Kang KS, Cottrell I (1979) In: Peppler HJ, Perlman D (eds) Microbial technology, vol 1, 2nd edn. Academic, New York, NY, p 417

    Google Scholar 

  62. Kumar R, Srivastava A, Behari K (2007) Graft copolymerization of methacrylic acid onto xanthan Gum by Fe2+/H2O2 redox initiator. J Appl Polym Sci 105:1922–1929

    Article  CAS  Google Scholar 

  63. Sandvick EI, Merker JM (1977) In: Sandford P, Laskin A (eds) Extra cellular microbial polysaccharides, ACS symposium series No. 45. American Chemical Society, Washington, DC, p 242

    Chapter  Google Scholar 

  64. Kadajji VG, Betageri GV (2011) Water soluble polymers for pharmaceutical applications. Polymers 3:1972–2009

    Article  CAS  Google Scholar 

  65. Harding SE, Day K, Dhami R, Lowe PM (1997) Further observation on the size, shape and hydration of kappa-carrageenan in dilute solution. Carbohydr Polym 32:81–87

    Article  CAS  Google Scholar 

  66. Thanh TTT, Yuguchi Y, Mimura M, Yasunaga H, Takano R, Urkawa H (2002) Molecular characteristics and gelling properties of carrageenan family, 1: preparation of novel carrageenans and their dilute solution properties. Macromol Chem Phys 203:15–23

    Article  CAS  Google Scholar 

  67. Mishra DK, Tripathy J, Behari K (2008) Synthesis of graft copolymer (k-carrageenan-g-N, N-dimethylacrylamide) and studies of metal ion uptake, swelling capacity and flocculation properties. Carbohydr Polym 71:524–534

    Article  CAS  Google Scholar 

  68. Clark AH, Ross-Murphy SB (1987) Mechanical and structural properties of biopolymers gels. Adv Polym Sci 83:60–184

    Google Scholar 

  69. Guo JH, Skinner GW, Harcum WW, Barnum PE (1999) Investigating the fundamental effects of binder on pharmaceutical tablet performance. Drug Dev Ind Pharm 25:1129–1135

    Article  Google Scholar 

  70. De Ruiter GA, Rudolph B (1997) Carrageenan biotechnology. Trends Food Sci Technol 8(12):389–395

    Article  Google Scholar 

  71. Zhang QB, Li N, Liu XG, Zhao ZQ, Li ZE, Xu ZH (2004) The structure of a sulfated galactan from Porphyra haitanensis and its in vivo antioxidant activity. Carbohydr Res 339:105–111

    Article  CAS  Google Scholar 

  72. Zhang QB, Yu PZ, Li ZE, Zhang H, Xu ZH, Li PC (2003) Antioxidant activities of sulfated polysaccharide fractions from Porphyra haitanesis. J Appl Phycol 15:305–310

    Article  CAS  Google Scholar 

  73. Hosseinzadeh H, Sadeghzadeh M, Babazadeh M (2011) Preparation and properties of carrageenan-g-poly(acrylic acid)/bentonite superabsorbent composite. J Biomater Nanobiotechnol 2:311–317

    Article  CAS  Google Scholar 

  74. Yang JS, Xie YJ, He W (2011) Research progress on chemical modification of alginate: a review. Carbohydr Polym 84:33–39

    Article  CAS  Google Scholar 

  75. Jay SM, Saltzman WM (2009) Controlled delivery of VEGF via modulation of alginate microparticle ioniccrosslinking. J Control Release 134:26–34

    Article  CAS  Google Scholar 

  76. Wong TW (2011) Alginate graft copolymers and alginate-co-excipient physical mixture in oral drug delivery. J Pharm Pharmacol 63:1497–1512

    Article  CAS  Google Scholar 

  77. Wang WB, Wang AQ (2010) Synthesis and swelling properties of pH-sensitive semi-IPN superabsorbent hydrogels based on sodium alginate-g-poly(sodium acrylate) and polyvinylpyrrolidone. Carbohydr Polym 80(4):1028–1036

    Article  CAS  Google Scholar 

  78. Chowdhury P, Samui S, Kundu T, Saha B (2004) Synthesis and characterization of poly(methyl methacrylate) grafted from acacia gum. J Chin Chem Soc 51:97–101

    CAS  Google Scholar 

  79. Williams PA, Phillips GO (2009) Gum arabic. In: Phillips GO, Williams PA (eds) Handbook of hydrocolloids. Woodhead, Cambridge, pp 252–273

    Chapter  Google Scholar 

  80. Islam AM, Phillips GO, Sijivo A, Snowden MJ, Williams PA (1997) A review in recent developments on the regulatory, structural and functional aspects of gum arabic. Food Hydrocolloid 11:493–505

    Article  CAS  Google Scholar 

  81. Sanchez C, Renard D, Robert P, Schmitt C, Lefebvre J (2002) Structure and rheological properties of acacia gum dispersions. Food Hydrocolloid 16:257–267

    Article  CAS  Google Scholar 

  82. Mallik H, Gupta N, Sarkar A (2002) Anisotropic electrical conduction in gum Arabica–a biopolymer. Mater Sci Eng C 20:215–218

    Article  Google Scholar 

  83. Zhang LM, Zhou JF, Hui PS (2005) A comparative study on viscosity behavior of water-soluble chemically modified guar gum derivatives with different functional lateral groups. J Sci Food Agric 85:2638–2644

    Article  CAS  Google Scholar 

  84. Dodi G, Hritcu D, Popa MI (2011) Carboxymethylation of guar gum: synthesis and characterization. Cell Chem Technol 45:171–176

    CAS  Google Scholar 

  85. Magalhães GA Jr, Santos CMW, Silva DA, Maciel JS, Feitosa JPA, Paula HCB, de Paul RCM (2009) Microspheres of chitosan/carboxymethyl cashew gum (CH/CMCG): effect of chitosan molar mass and CMCG degree of substitution on the swelling and BSA release. Carbohydr Polym 77:217–222

    Article  CAS  Google Scholar 

  86. Seaman JK (1980) In: Davidson RL (ed) Handbook of water-soluble gums and resins. McGraw-Hill, New York, NY

    Google Scholar 

  87. Prabhanjan H, Gharia MM, Srivastava HC (1989) Guar gum derivatives. Part I: preparation and properties. Carbohydr Polym 11(4):279–292

    Article  CAS  Google Scholar 

  88. Lapasin R, Pricl S, Tracanelli P (1991) Rheology of hydroxyethyl guar gum derivatives. Carbohydr Polym 14(4):411–427

    Article  CAS  Google Scholar 

  89. Patel SP, Ranjan G, Patel VS (1987) Rheological properties of guar gum and hydroxyethyl guar gum in aqueous solution. Int J Biol Macromol 9(6):314–320

    Article  CAS  Google Scholar 

  90. Reis AV, Guilherme MR, Cavalcanti OA, Rubira AF, Muniz EC (2006) Synthesis and characterization of pH-responsive hydrogels based on chemically modified Arabic gum polysaccharide. Polymer 47:2023–2029

    Article  CAS  Google Scholar 

  91. Shenoy MA, D’Melo DJ (2010) Synthesis and characterization of acryloyloxy guar gum. J Appl Polym Sci 117:148–154

    CAS  Google Scholar 

  92. Guilherme MR, Reis AV, Takahashi SH, Rubira AF, Feitosa JPA, Muniz EC (2005) Synthesis of a novel superabsorbent hydrogel by copolymerization of acrylamide and cashew gum modified with glycidyl methacrylate. Carbohydr Polym 61:464–471

    Article  CAS  Google Scholar 

  93. Hamcerencu M, Desbrieres J, Popa M, Khoukh A, Riess G (2007) New unsaturated derivatives of xanthan gum: synthesis and characterization. Polymer 48:1921–1929

    Article  CAS  Google Scholar 

  94. Guilherme MR, Moia TA, Reis AV, Paulino AT, Rubira AF, Mattoso LHC, Muniz EC, Tambourgi EB (2009) Synthesis and water absorption transport mechanism of a pH-sensitive polymer network structured on vinyl-functionalized pectin. Biomacromolecules 10:190–196

    Article  CAS  Google Scholar 

  95. Reis AV, Fajardo AR, Schuquel ITA, Guilherme MR, Vidotti GJ, Rubira AF, Muniz EC (2009) Reaction of glycidyl methacrylate at the hydroxyl and carboxylic groups of poly(vinyl alcohol) and poly(acrylic acid): is this reaction mechanism still unclear? J Org Chem 74:3750–3757

    Article  CAS  Google Scholar 

  96. Singh RP, Pal S, Mal D (2006) A high performance flocculating agent and viscosifiers based on cationic guar gum. Macromol Symp 242:227–234

    Article  CAS  Google Scholar 

  97. Oberstar HE, Westman MA (1977) Conditioning shampoo composition containing a cationic derivative of a natural gum (such as guar) as the active conditioning ingredient. US Patent No. 4061602

    Google Scholar 

  98. Huang YH, Yu HQ, Xiao CB (2007) pH-sensitive cationic guar gum/poly (acrylic acid) polyelectrolyte hydrogels: swelling and in vitro drug release. Carbohydr Polym 69:774–783

    Article  CAS  Google Scholar 

  99. Huang YH, Lu J, Xiao CB (2007) Thermal and mechanical properties of cationic guar gum/poly(acrylic acid) hydrogel membranes. Polym Degrad Stab 92:1072–1081

    Article  CAS  Google Scholar 

  100. Chowdhary MS, Cottrell IW (1999) Method for preparation of amphoteric guar gum derivatives. EP Appl. No. 0943627

    Google Scholar 

  101. Benninga H (1969) Cationic and anionic substituted polysaccharides and process for preparing same. US Patent No. 3467647

    Google Scholar 

  102. Liu XL, Cao CY, Peng JJ (2010) Study on half-dry preparation of amphoteric guar gum and its application in papermaking as strength aid. In: Research progress in paper industry and biorefinery (4th ISETPP). 1-3:1780–1784

    Google Scholar 

  103. Wang XH, Cui YC, Li DL (2004) Application of amphoteric sesbania gum to treatment wastewater from printing and drying. Technol Water Treat (Chinese) 30(6):369–371

    CAS  Google Scholar 

  104. Xiong Y, Hu ZY (2007) Synthesis of zwitterionic guar gum. Chemical Industry Times (Chinese) 21(1):37–39

    CAS  Google Scholar 

  105. Lapasin R, Lorenzi LD, Pricl S, Torriano G (1995) Flow properties of hydroxypropyl guar gum and its long-chain hydrophobic derivatives. Carbohydr Polym 28:195–202

    Article  CAS  Google Scholar 

  106. Wang GH, Zhang LM (2007) Manipulating formation and drug-release behavior of new sol−gel silica matrix by hydroxypropyl guar gum. J Phys Chem B 111(36):10665–10670

    Article  CAS  Google Scholar 

  107. Ho FFL, Kohler RR, Ward GA (1972) Determination of molar substitution and degree of substitution of hydroxypropyl cellulose by nuclear magnetic resonance spectrometry. Anal Chem 44(1):178–181

    Article  Google Scholar 

  108. Odian G (1981) Principles of polymerization, 2nd edn. Wiley, New York, NY

    Google Scholar 

  109. Raval DK, Patel RG, Patel VS (1988) Grafting of methyl methacrylate onto gum gum by hydrogen peroxide initiation. J Appl Polym Sci 35:2201–2209

    Article  CAS  Google Scholar 

  110. Bajpai UDN, Jain A (1993) Grafting of polyacrylamide on to guar gum with the redox system potassium bromate/thiomalic acid. Polym Int 31:1–7

    Article  CAS  Google Scholar 

  111. Bajpai UDN, Mishra V, Rai S (1993) Grafting of poly (acrylonitrile) onto guar gum using potassium persulfate/ascorbic acid redox initiating system. J Appl Polym Sci 47:717–722

    Article  CAS  Google Scholar 

  112. Behari KUNJ, Taunk KAVITA, Tripathi MALA (1999) Cu+2/mandelic acid redox pair initiated graft copolymerization acrylamide onto guar gum. J Appl Polym Sci 71:739–745

    Article  CAS  Google Scholar 

  113. Behari K, Kumar R, Tripathi M, Pandey PK (2001) Graft copolymerization of methacrylamide onto guar gum using a potassium chromate/malonic acid redox pair. Macromol Chem Phys 202:1873–1877

    Article  CAS  Google Scholar 

  114. Mundargi RC, Agnihotri SA, Patil SA, Aminabhavi TM (2006) Graft copolymerization of methacrylic acid onto guar gum, using potassium persulfate as an initiator. J Appl Polym Sci 101:618–623

    Article  CAS  Google Scholar 

  115. Pandey PK, Srivastava A, Tripathy J, Behari K (2006) Graft copolymerization of acrylic acid onto guar gum initiated by vanadium (V)–mercaptosuccinic acid redox pair. Carbohydr Polym 65:414–420

    Article  CAS  Google Scholar 

  116. Srivastava A, Behari K (2006) Synthesis and characterization of graft copolymer (guar gum-g-N-vinyl-2-pyrrolidone) and investigation of metal ion sorption and swelling behavior. J Appl Polym Sci 100:2480–2489

    Article  CAS  Google Scholar 

  117. Sand A, Yadav M, Mishra MM, Tripathy J, Behari K (2011) Studies on graft copolymerization of 2-acrylamidoglycolic acid on to partially carboxymethylated guar gum and physico-chemical properties. Carbohydr Polym 83:14–21

    Article  CAS  Google Scholar 

  118. Pandey PK, Banerjee J, Taunk K, Behari K (2003) Graft copolymerization of acrylic acid onto xanthum gum using a potassium monopersulfate/Fe2+ redox pair. J Appl Polym Sci 89:1341–1346

    Article  CAS  Google Scholar 

  119. Pandey BPK, Kumar R, Taunk K (2001) Graft copolymerization of acrylamide onto xanthan gum. Carbohydr Polym 46:185–189

    Article  Google Scholar 

  120. Banerjee J, Srivastava A, Srivastava A, Behari K (2006) Synthesis and characterization of xanthan Gum-g-N-vinyl formamide with a potassium monopersulfate/Ag(I) system. J Appl Polym Sci 101:1637–1645

    Article  CAS  Google Scholar 

  121. Srivastava A, Behari K (2009) Modification of natural polymer via free radical graft copolymerization of 2-acrylamido-2-methyl-1-propane sulfonic acid in aqueous media and study of swelling and metal ion sorption behavior. J Appl Polym Sci 114:1426–1434

    Article  CAS  Google Scholar 

  122. Srivastava A, Mishra DK, Tripathy J, Behari K (2009) One pot synthesis of xanthan gum-g-N-vinyl-2-pyrrolidone and study of their metal ion sorption behavior and water swelling property. J Appl Polym Sci 111:2872–2880

    Article  CAS  Google Scholar 

  123. Kumar R, Srivastava A, Behari K (2009) Synthesis and characterization of polysaccharide based graft copolymer by using potassium peroxymonosulphate/ascorbic acid as an efficient redox initiator in inert atmosphere. J Appl Polym Sci 112:1407–1415

    Article  CAS  Google Scholar 

  124. Bajpai UDN, Rai S (1988) Grafting of acrylamide onto guar gum using KMnO4/oxalic acid redox system. J Appl Polym Sci 35:1169–1182

    Article  CAS  Google Scholar 

  125. Taunk K, Behari K (2000) Graft copolymerization of acrylic acid onto guar gum. J Appl Polym Sci 77:39–44

    Article  CAS  Google Scholar 

  126. Behari K, Tripathi M, Taunk K, Kumar R (2000) Studies of graft copolymerization of acrylamide onto guar gum using peroxydiphosphate–metabisulphite redox pair. Polym Int 49:153–157

    Article  CAS  Google Scholar 

  127. Taunk K, Behari K (2002) Studies on graft copolymerization of 4-vinylpyridine onto guar gum. J Appl Polym Sci 84:2380–2385

    Article  CAS  Google Scholar 

  128. Behari K, Banerjee J, Srivastava A, Mishra DK (2005) Studies on graft copolymerization of N-vinyl formamide onto guar gum initiated by bromate/ascorbic acid redox pair. Indian J Chem Technol 12:664–670

    CAS  Google Scholar 

  129. Bajpai UDN, Jain A, Bajpai AK (1990) Grafting of acrylamide onto guar gum with the redox system Cu2+/Na2S2O5. Acta Polym Sin 41:577–581

    Article  CAS  Google Scholar 

  130. Sharma RK, Lalita (2011) Synthesis and characterization of graft copolymers of N-Vinyl-2-Pyrrolidone onto guar gum for sorption of Fe2+ and Cr6+ ions. Carbohydr Polym 83:1929–1936

    Google Scholar 

  131. Raval DK, Patel MV, Patel RG, Patel VS (1991) Perspective study of vinyl grafting onto leucaena glauca seed gum and guar gum by hydrogen peroxide Initiation. Starch/Stärke 43:483–487

    Article  CAS  Google Scholar 

  132. da Silva DA, de Paula RCM, Feitosa JPA (2007) Graft copolymerisation of acrylamide onto cashew gum. Eur Polym J 43:2620–2629

    Article  CAS  Google Scholar 

  133. Toti US, Soppimath KS, Mallikarjuna NN, Aminabhavi TM (2004) Acrylamide-grafted-acacia gum polymer matrix tablets as erosion-controlled drug delivery systems. J Appl Polym Sci 93:2245–2253

    Article  CAS  Google Scholar 

  134. Pottenger CR, Johnson DC (1970) Mechanism of cerium (IV) oxidation of glucose and cellulose. J Polym Sci A1 Polym Chem 8:301–318

    Article  CAS  Google Scholar 

  135. Sharma BR, Kumar V, Soni PL (2003) Graft copolymerization of acrylonitrile onto Cassia tora gum with ceric ammonium nitrate–nitric acid as a redox initiator. J Appl Polym Sci 90:129–136

    Article  CAS  Google Scholar 

  136. Yoshida T, Hattori K, Sawada Y, Choi Y, Uryu T (1996) Graft copolymerization of methyl methacrylate onto curdlan. J Polym Sci A Polym Chem 34:3053–3060

    Article  CAS  Google Scholar 

  137. Duan ML, Garica FG, Pinto MR, Soares BG (2002) Grafting of polymethyl methacrylate from poly(ethylene-co-vinylacetate) copolymer using atom transfer radical polymerization. Eur Polym J 38:759–769

    Article  Google Scholar 

  138. Mark HF, Bikales NM, Overberger C, Menges G (1987) Encyclopedia of polymer science and engineering, vol 7, 2nd edn. Wiley, New York, NY

    Google Scholar 

  139. Chowdhury P (1998) Graft copolymerization of ethyl methacrylate onto polyvinyl alcohol using ceric ion initiator. Indian J Chem Technol 5:346–350

    CAS  Google Scholar 

  140. Chowdhury P, Pal CM (1999) Graft copolymerization of methyl acrylate onto polyvinyl alcohol using Ce(IV) initiator. Eur Polym J 35:2207–2213

    Article  CAS  Google Scholar 

  141. Chowdhury P, Samui S, Kundu T, Nandi MM (2001) Graft polymerization of methyl methacrylate onto guar gum with ceric ammonium sulfate/dextrose redox pair. J Appl Polym Sci 82:3520–3525

    Article  CAS  Google Scholar 

  142. Thimma RT, Reddy NS, Tammishetti S (2003) Synthesis and characterization of guar gum-graft-polyacrylonitrile. Polym Adv Technol 14:663–668

    Article  CAS  Google Scholar 

  143. Trivedi JH, Kalia K, Patel NK, Trivedi HC (2005) Ceric-induced grafting of acrylonitrile onto sodium salt of partially carboxymethylated guar gum. Carbohydr Polym 60:117–125

    Article  CAS  Google Scholar 

  144. Wan XF, Li YM, Wang XJ, Chen SL, Gu XY (2007) Synthesis of cationic guar gum-graft-polyacrylamide at low temperature and its flocculating properties. Eur Polym J 43:3655–3661

    Article  CAS  Google Scholar 

  145. Samui S, Ghosh AK, Ali MA, Chowdhury P (2007) Synthesis, characterization and kinetic studies of PEMA grafted acacia gum. Indian J Chem Technol 14:126–133

    CAS  Google Scholar 

  146. Wan XF, Li YM, Wang XJ, Wang YX, Song LL (2007) Ceric ion-induced graft copolymerization of acrylamide on cationic guar gum at low temperature. J Appl Polym Sci 104:3715–3722

    Article  CAS  Google Scholar 

  147. Mohamadnia Z, Zohuriaan-Mehr MJ, Kabiri K, Razavi-Nouri M (2008) Tragacanth gum-graft-polyacrylonitrile: synthesis, characterization and hydrolysis. J Polym Res 15:173–180

    Article  CAS  Google Scholar 

  148. Singh V, Tiwari A, Singh SP, Kumari P, Tiwari S (2008) Ceric ammonium sulfate/sodium disulfite initiated grafting of acrylamide on to cassia reticulata seed gum. J Appl Polym Sci 110:1477–1484

    Article  CAS  Google Scholar 

  149. Goyal P, Kumar V, Sharma P (2008) Graft copolymerization of acrylamide onto tamarind kernel powder in the presence of ceric ion. J Appl Polym Sci 108:3696–3701

    Article  CAS  Google Scholar 

  150. Hosseinzadeh H (2009) Ceric-initiated free radical graft copolymerization of acrylonitrile onto kappa carrageenan. J Appl Polym Sci 114:404–412

    Article  CAS  Google Scholar 

  151. Işıklan N, Kurşun F, İnal M (2009) Graft copolymerization of itaconic acid onto sodium alginate using ceric ammonium nitrate as initiator. J Appl Polym Sci 114:40–48

    Article  CAS  Google Scholar 

  152. Xie CX, Feng YJ, Cao WP, Teng H, Li JF, Lu ZY (2009) Novel biodegradable flocculating agents prepared by grafting polyacrylamide to konjac. J Appl Polym Sci 111:2527–2536

    Article  CAS  Google Scholar 

  153. Goyal P, Kumar V, Sharma P (2009) Graft copolymerization onto tamarind kernel powder: ceric(IV)-initiated graft copolymerization of acrylonitrile. J Appl Polym Sci 114:377–386

    Article  CAS  Google Scholar 

  154. Wang CX, Qiu B (2011) Graft copolymerization of glycidyl methacrylate onto guar gum (Chinese). New Chem Mater 39(6):112–114

    CAS  Google Scholar 

  155. Rani P, Sen G, Mishra S, Jha U (2012) Microwave assisted synthesis of polyacrylamide grafted gum ghatti and its application as flocculant. Carbohydr Polym 89:275–281

    Article  CAS  Google Scholar 

  156. Mishra A, Malhotra AV (2012) Graft copolymers of xyloglucan and methyl methacrylate. Carbohydr Polym 87:1899–1904

    Article  CAS  Google Scholar 

  157. Tiwari A, Grailer JJ, Pilla S, Steeber DA, Gong SQ (2009) Biodegradable hydrogels based on novel photopolymerizable guar gum–methacrylate macromonomers for in situ fabrication of tissue engineering scaffolds. Acta Biomater 5:3441–3452

    Article  CAS  Google Scholar 

  158. Kumar R, Setia A, Mahadevan N (2012) Grafting modification of the polysaccharide by the use of microwave irradiation—a review. Int J Recent Adv Pharm Res 2(2):45–53

    Google Scholar 

  159. Singh V, Kumara P, Sanghi R (2012) Use of microwave irradiation in the grafting modification of the polysaccharides—a review. Prog Polym Sci 37:340–364

    Article  CAS  Google Scholar 

  160. Singh V, Tiwari A, Tripathi DN, Sanghi R (2004) Grafting of polyacrylonitrile onto guar gum under microwave irradiation. J Appl Polym Sci 92:1569–1575

    Article  CAS  Google Scholar 

  161. Kaith BS, Jindal R, Jana AK, Maiti M (2009) Characterization and evaluation of methyl methacrylate-acetylated Saccharum spontaneum L. graft copolymers prepared under microwave. Carbohydr Polym 78:987–996

    Article  CAS  Google Scholar 

  162. Kumar A, Singh K, Ahuja M (2009) Xanthan-g-poly(acrylamide): microwave-assisted synthesis, characterization and in vitro release behavior. Carbohydr Polym 76:261–267

    Article  CAS  Google Scholar 

  163. Singh V, Tiwari A, Tripathi DN, Sanghi R (2004) Microwave assisted synthesis of guar-g-poly-acrylamide. Carbohydr Polym 58:1–6

    Article  CAS  Google Scholar 

  164. Singh V, Premlata C, Tiwari A, Sharma AK (2007) Alumina supported synthesis of Cassia marginata gum-g-poly(acrylonitrile) under microwave irradiation. Polym Adv Technol 18:379–385

    Article  CAS  Google Scholar 

  165. Singh V, Sharma AK, Maurya S (2009) Efficient cadmium(II) removal from aqueous solution using microwave synthesized guar gum-graft-poly(ethylacrylate). Ind Eng Chem Res 48:4688–4696

    Article  CAS  Google Scholar 

  166. Malik S, Ahuja M (2011) Gum kondagogu-g-poly (acrylamide): microwave-assisted synthesis, characterisation and release behaviour. Carbohydr Polym 86:177–184

    Article  CAS  Google Scholar 

  167. Sen G, Mishra S, Rani GU, Rani P, Prasad R (2012) Microwave initiated synthesis of polyacrylamide grafted Psyllium and its application as a flocculant. Int J Biol Macromol 50:369–375

    Article  CAS  Google Scholar 

  168. Sena G, Mishra S, Jha U, Pal S (2010) Microwave initiated synthesis of polyacrylamide grafted guar gum (GG-g-PAM)—characterizations and application as matrix for controlled release of 5-amino salicylic acid. Int J Biol Macromol 47:164–170

    Article  CAS  Google Scholar 

  169. Singh V, Kumari PL, Tiwari A, Pandey S (2010) Alumina-supported microwave synthesis of cassia marginata seed gum-graft-polyacrylamide. J Appl Polym Sci 117:3630–3638

    CAS  Google Scholar 

  170. Pal S, Ghorai S, Dash MK, Ghosh S, Udayabhanu G (2011) Flocculation properties of polyacrylamide grafted carboxymethyl guar gum (CMG-g-PAM) synthesised by conventional and microwave assisted method. J Hazard Mater 192:1580–1588

    Article  CAS  Google Scholar 

  171. Gupta B, Scherer G (1994) Proton exchange membranes by radiation-induced graft copolymerization of monomers into Teflon-FEP films. Chimia 48:127–137

    CAS  Google Scholar 

  172. Xu Z, Sun Y, Yang Y, Ding J, Pang J (2007) Effect of γ-irradiation on some physiochemical properties of konjac glucomannan. Carbohydr Polym 70:444–450

    Article  CAS  Google Scholar 

  173. Lokhande HT, Varadarajan PV, Nachane ND (1993) Gamma-radiation induced grafting of acrylonitrile onto guar gum: Influence of reaction conditions on the properties of the grafted and saponified products. J Appl Polym Sci 48:495–503

    Article  CAS  Google Scholar 

  174. Biswal J, Kumar V, Bhardwaj YK, Goel NK, Dubey KA, Chaudhari CV, Sabharwal S (2007) Radiation-induced grafting of acrylamide onto guar gum in aqueous medium: synthesis and characterization of grafted polymer guar-g-acrylamide. Radiat Phys Chemi 76:1624–1630

    Article  CAS  Google Scholar 

  175. Li YF, Ha YM, Tao LR, Li YJ, Wang F (2011) Preparation of xanthan gum-g-N-vinylpyrrolidone by radiation and adsorption property of phenol and polyphenol. Adv Mater Res 236–238:2694–2700

    Article  CAS  Google Scholar 

  176. Sommers CH (2004) Recent advances in food irradiation. ACS, Philadelphia, PA

    Google Scholar 

  177. Kumar K, Kaith BS, Jindal R, Mittal H (2012) Gamma-radiation initiated synthesis of Psyllium and acrylic acid-based polymeric networks for selective absorption of water from different oil–water emulsions. J Appl Polym Sci 124:4969–4977

    CAS  Google Scholar 

  178. Odian G (2002) Principles of polymerization, 3rd edn. Wiley, New York, NY

    Google Scholar 

  179. Shanmugharaj AM, Kim JK, Ryu SH (2006) Modification of rubber surface by UV surface grafting. Appl Surf Sci 252(16):5714–5722

    Article  CAS  Google Scholar 

  180. Ma H, Davis RH, Bowman CN (2001) Principal factors affecting sequential photoinduced graft polymerization. Polymer 42:8333–8338

    Article  CAS  Google Scholar 

  181. Thaker MD, Trivedi HC (2005) Ultraviolet-radiation-induced graft copolymerization of methyl acrylate onto the sodium salt of partially carboxymethylated guar gum. J Appl Polym Sci 97:1977–1986

    Article  CAS  Google Scholar 

  182. Yamagishi H, Saito K, Furusaki S, Sugo T, Hosoi F, Okamoto J (1993) Molecular weight distribution of methyl methacrylate grafted onto a microfiltration membrane by radiation-induced graft polymerization. J Memb Sci 85:71–80

    Article  CAS  Google Scholar 

  183. Ruckert D, Cazaux F, Coqueret X (1999) Electron-beam processing of destructurized allylurea–starch blends: immobilization of plasticizer by grafting. J Appl Polym Sci 73:409–417

    Article  CAS  Google Scholar 

  184. Olivier A, Cazaux F, Coqueret X (2001) Compatibilization of starch−allylurea blends by electron beam irradiation: spectroscopic monitoring and assessment of grafting efficiency. Biomacromolecules 2:1260–1266

    Article  CAS  Google Scholar 

  185. Mesquita AC, Mori MN, Andrade e Silva LG (2004) Polymerization of vinyl acetate in bulk and emulsion by gamma irradiation. Radiat Phys Chem 71:253–256

    Article  CAS  Google Scholar 

  186. Fan JC, Chen J, Yang LM, Lin H, Cao FQ (2009) Preparation of dual-sensitive graft copolymer hydrogel based on N-maleoyl-chitosan and poly(N-isopropylacrylamide) by electron beam radiation. Bull Mater Sci 32:521–526

    Article  CAS  Google Scholar 

  187. Liu LZ, Priou C (2010) Grafting polymerization of guar and other polysaccharides by electron beams. US Patent No. 7838667 B2

    Google Scholar 

  188. Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed 40:2004–2021

    Article  CAS  Google Scholar 

  189. Tizzotti M, Creuzet C, Labeau MP, Hamaide T, Boisson F, Drockenmuller E, Charlot A, Fleury E (2010) Synthesis of temperature responsive biohybrid guar-based grafted copolymers by click chemistry. Macromolecules 43:6843–6852

    Article  CAS  Google Scholar 

  190. Tizzotti M, Labeau MP, Hamaide T, Drockenmuller E, Charlot AL, Fleury E (2010) Synthesis of thermosensitive guar-based hydrogels with tunable physico-chemical properties by click chemistry. J Polym Sci A Polym Chem 48:2733–2742

    Article  CAS  Google Scholar 

  191. Matyjaszewski K, Xia JH (2001) Atom transfer radical polymerization. Chem Rev 101:2921–2990

    Article  CAS  Google Scholar 

  192. Bontempo D, Masci G, Leonardis PD, Mannina L, Capitani D, Crescenzi V (2006) Versatile grafting of polysaccharides in homogeneous mild conditions by using atom transfer radical polymerization. Biomacromolecules 7:2154–2161

    Article  CAS  Google Scholar 

  193. Wang WB, Kang YR, Wang AQ (2010) Synthesis, characterization and swelling properties of the guar gum-g-poly(sodium acrylate-co-styrene)/muscovite superabsorbent composites. Sci Technol Adv Mater 11(2):025006

    Article  CAS  Google Scholar 

  194. Biggs S, Habgood M, Jameson GJ, Yan YD (2000) Aggregate structures formed via a bridging flocculation mechanism. Chem Eng J 80:13–22

    Article  CAS  Google Scholar 

  195. Negro C, Fuente E, Blanco A, Tijero J (2005) Flocculation mechanism induced by phenolic resin/PEO and floc properties. AIChE J 51:1022–1031

    Article  CAS  Google Scholar 

  196. Chen L, Chen DH, Wu CL (2003) A new approach for the flocculation mechanism of chitosan. J Polym Environ 11:87–92

    Article  Google Scholar 

  197. Bahamdan A, Daly WH (2007) Hydrophobic guar gum derivatives prepared by controlled grafting processes. Polym Adv Technol 18:652–659

    Article  CAS  Google Scholar 

  198. Skotheim TA, Elsenbaumer RL, Reynolds JR (1997) Handbook of conducting polymers, 2nd edn. Dekker, New York, NY

    Google Scholar 

  199. Gang L, Freund MS (1997) New approach for the controlled cross-linking of polyaniline: synthesis and characterization. Macromolecules 30:5660–5665

    Article  Google Scholar 

  200. Trivedi DC, Dhawan SK, Trivedi DC, Dhawan SK (1993) Antistatic applications of conducting polyaniline. Polym Adv Technol 4:335–340

    Article  CAS  Google Scholar 

  201. Zhang X, Goux WJ, Manohar SK (2004) Synthesis of polyaniline nanofibers by “nanofiber seeding”. J Am Chem Soc 126:4502–4503

    Article  CAS  Google Scholar 

  202. Li XG, Feng QL, Huang MR (2006) Facile synthesis and optimization of conductive copolymer nanoparticles and nanocomposite films from aniline with sulfodiphenylamine. Chem Eur J 12:1349–1359

    Article  CAS  Google Scholar 

  203. Tiwari A, Singh SP (2008) Synthesis and characterization of biopolymer-based electrical conducting graft copolymers. J Appl Polym Sci 108:1169–1177

    Article  CAS  Google Scholar 

  204. Li HC, Khor E (1994) Interaction of collagen with polypyrrole in the production of hybrid materials. Polym Int 35:53–59

    Article  CAS  Google Scholar 

  205. Li HC, Khor E (1995) A collagen-polypyrrole hybrid: influence of 3-butanesulfonate substitution. Macromol Chem Phys 196:1801–1812

    Article  CAS  Google Scholar 

  206. Bejenariu A, Popa M, Dulong V, Picton L, Cerf DL (2009) Trisodium trimetaphosphate crosslinked xanthan networks: synthesis, swelling, loading and releasing behaviour. Polym Bull 62:525–538

    Article  CAS  Google Scholar 

  207. Ray S, Maiti S, Sa B (2008) Preliminary investigation on the development of diltiazem resin complex loaded carboxymethyl xanthan beads. AAPS PharmSciTech 9:295–301

    Article  CAS  Google Scholar 

  208. Singh B, Chauhan N (2009) Modification of psyllium polysaccharides for use in oral insulin delivery. Food Hydrocolloid 23:928–935

    Article  CAS  Google Scholar 

  209. Silva DA, Feitosa JPA, Maciea JS, Paula HCB, de Paul RCM (2006) Characterization of crosslinked cashew gum derivatives. Carbohydr Polym 66:16–26

    Article  CAS  Google Scholar 

  210. George M, Abraham TE (2007) pH sensitive alginate–guar gum hydrogel for the controlled delivery of protein drugs. Int J Pharm 335:123–129

    Article  CAS  Google Scholar 

  211. Davies JM, Addy JM, Blackman RA, Blanchard JR, Ferbrache JE, Moore DC, Somerville HJ, Whitehead A (1984) Environmentaleffects of the use of oil-baseddrillingmuds in the NorthSea. Mar Pollut Bull 15:363–370

    Article  CAS  Google Scholar 

  212. Zhang LM, Tan YB, Li ZM (2000) Multifunctional characteristics of new carboxymethylcellulose-based graft copolymers for oilfield drilling. J Appl Polym Sci 77:195–201

    Article  CAS  Google Scholar 

  213. Zhang LM, Tan YB, Li ZM (2001) New water-soluble ampholytic polysaccharides for oil-field drilling treatment: a preliminary study. Carbohydr Polym 44:255–260

    Article  CAS  Google Scholar 

  214. Reddy BR, Eoff LS, Whitfill DL, Wilson JM et al (2002) Methods of consolidating formations or forming chemical casing or both while drilling. US Patent No. US6702044B2

    Google Scholar 

  215. Rosalam S, England R (2006) Review of xanthan gum production from unmodified starches by Xanthomonas comprestris sp. Enzyme Microb Technol 39:197–207

    Article  CAS  Google Scholar 

  216. Glicksman M, Sand RE (1973) Arabic gum. In: Whistler RL, BeMiller JN (eds) industrial gums: polysaccharides and their derivatives. Academic, New York, NY

    Google Scholar 

  217. Yassen EI, Herald TJ, Aramouni FM, Alavi S (2005) Rheological properties of selected gum solutions. Food Res Int 38:111–119

    Article  CAS  Google Scholar 

  218. Nickzare M, Zohuriaan-Mehr MJ, Yousefi AA, Ershad-Langroudi A (2009) Novel acrylic-modified acacia gum thickener: preparation, characterization and rheological properties. Starch/Stärke 61:188–198

    Article  CAS  Google Scholar 

  219. Singh V, Tiwari S, Sharma AK, Sanghi R (2007) Removal of lead from aqueous solutions using Cassia grandis seed gum-graft-poly(methylmethacrylate). J Colloid Interface Sci 316:224–232

    Article  CAS  Google Scholar 

  220. Ghosh S, Sen G, Jha U, Pal S (2010) Novel biodegradable polymeric flocculant based on polyacrylamide-grafted tamarind kernel polysaccharide. Bioresour Technol 101:9638–9644

    Article  CAS  Google Scholar 

  221. Sanghi R, Bhattacharya B, Singh V (2007) Seed gum polysaccharides and their grafted co-polymers for the effective coagulation of textile dye solutions. React Funct Polym 67:495–502

    Article  CAS  Google Scholar 

  222. Pal S, Sen G, Ghosh S, Singhc RP (2012) High performance polymeric flocculants based on modified polysaccharides—microwave assisted synthesis. Carbohydr Polym 87:336–342

    Article  CAS  Google Scholar 

  223. McLean D, Agarwal V, Stack K, Horne J, Richardson D (2011) Synthesis of guar gum-graft-poly(acrylamide-co-diallyldimethylammonium chloride) and its application in the pulp and paper industry. Bioresources 6(4):4168–4180

    CAS  Google Scholar 

  224. McLean D, Agarwal V, Stack K, Richardson D (2011) Use of a new novel grafted guar gum-copolymer as a pitch fixative [online]. In: 65th Appita annual conference and exhibition, Rotorua New Zealand 10–13 April 2011: Conference technical papers. Carlton, Vic.: Appita Inc., pp 65–69

    Google Scholar 

  225. Xu XH, Ren GL, Cheng J, Liu Q, Li DG, Chen Q (2006) Layer by layer self-assembly immobilization of glucose oxidase onto chitosan-graft-polyaniline polymers. J Mater Sci 41:3147–3149

    Article  CAS  Google Scholar 

  226. Spinks GM, Shin SR, Wallace GG, Whitten PG, Kim IY, Kim SI, Kim SJ (2007) A novel “dual mode” actuation in chitosan/polyaniline/carbon nanotube fibers. Sens Actuators B Chem 121:616–621

    Article  CAS  Google Scholar 

  227. Tiwari A (2007) Gum Arabic-graft-polyaniline: an electrically active redox biomaterial for sensor applications. J Macromol Sci A Pure Appl Chem 44:735–745

    Article  CAS  Google Scholar 

  228. Shin SR, Park SJ, Yoon SG, Spinks GM, Kim SI, Kim SJ (2005) Synthesis of conducting polyaniline in semi-IPN based on chitosan. Synth Met 154:213–216

    Article  CAS  Google Scholar 

  229. Kim SJ, Shin SR, Spinks GM, Kim IY, Kim SI (2005) Synthesis and characteristics of a semi-interpenetrating polymer network based on chitosan/polyaniline under different pH conditions. J Appl Polym Sci 96:867–873

    Article  CAS  Google Scholar 

  230. Tiwari A, Sen V, Dhakate SR, Mishra AP, Singh V (2008) Synthesis, characterization, and hoping transport properties of HCl doped conducting biopolymer-co-polyaniline zwitterion hybrids. Polym Adv Technol 19:909–914

    Article  CAS  Google Scholar 

  231. Tiwari A (2008) Synthesis and characterization of pH switching electrical conducting biopolymer hybrids for sensor applications. J Polym Res 15:337–342

    Article  CAS  Google Scholar 

  232. Philip AK, Philip B (2010) Colon targeted drug delivery systems: a review on primary and novel approaches. Oman Med J 25(2):79–87

    Article  Google Scholar 

  233. Prabaharan M (2011) Prospective of guar gum and its derivatives as controlled drug delivery systems. Int J Biol Macromol 49(2):117–124

    Article  CAS  Google Scholar 

  234. Kulkarni RV, Sa B (2008) Evaluation of pH-sensitivity and drug release characteristics of (polyacrylamide-grafted-xanthan)–carboxymethyl cellulose-based pH-sensitive interpenetrating network hydrogel beads. Drug Dev Ind Pharm 34:1406–1414

    Article  CAS  Google Scholar 

  235. Singh B, Chauhan GS, Kumar S, Chauhan N (2007) Synthesis, characterization and swelling responses of pHsensitive psyllium and polyacrylamide based hydrogels for the use in drug delivery (I). Carbohydr Polym 67:190–200

    Article  CAS  Google Scholar 

  236. Chen J, Liu MZ, Chen S (2009) Synthesis and characterization of thermo- and pH-sensitive kappa-carrageenan-g-poly(methacrylic acid)/poly(N, N-diethylacrylamide) semi-IPN hydrogel. Mater Chem Phys 115:339–346

    Article  CAS  Google Scholar 

  237. Wang AQ, Wang WB (2009) Superabsorbent materials. Kirk-Othmer Encyclopedia of Chemical Technology. doi: 10.1002/0471238961.supewang.a01

    Google Scholar 

  238. Guilherme MR, Reis AV, Paulino AT, Fajardo AR, Muniz EC, Tambourgi EB (2007) Superabsorbent hydrogel based on modified polysaccharide for removal of Pb2+ and Cu2+ from water with excellent performance. J Appl Polym Sci 105:2903–2909

    Article  CAS  Google Scholar 

  239. Kiatkamjornwong S, Mongkolsawat K, Sonsuk M (2002) Synthesis and property characterization of cassava starch grafted poly[acrylamide-co-(maleic acid)] superabsorbent via γ-irradiation. Polymer 43:3915–3924

    Article  CAS  Google Scholar 

  240. Wang WB, Wang AQ (2010) Nanocomposite of carboxymethyl cellulose and attapulgite as a novel pH-sensitive superabsorbent: synthesis, characterization and properties. Carbohydr Polym 82:83–91

    Article  CAS  Google Scholar 

  241. Shi XN, Wang WB, Wang AQ (2011) Synthesis, characterization and swelling behaviors of guar gum-g-poly(sodium acrylate-co-styrene)/vermiculite superabsorbent composites. J Compos Mater 45:2189–2198

    Article  CAS  Google Scholar 

  242. Fujioka R, Tanaka Y, Yoshimura T (2009) Synthesis and properties of superabsorbent hydrogels based on guar gum and succinic anhydride. J Appl Polym Sci 114:612–616

    Article  CAS  Google Scholar 

  243. Wang WB, Wang AQ (2009) Preparation, characterization and properties of superabsorbent nanocomposites based on natural guar gum and modified rectorite. Carbohydr Polym 77:891–897

    Article  CAS  Google Scholar 

  244. Li ZJ, Li MJ, Zhu XF, Hao MD, Wang HF, Miao ZC, Zhang CW (2010) Study on xanthan Gum-based superabsorbent resin prepared by graft modification. Fine Chem (Chinese) 27:16–25

    Google Scholar 

  245. Zhang J, Zhang ST, Yuan K, Wang YP (2007) Graft copolymerization of artemisia seed gum with acrylic acid under microwave and its water absorbency. J Macromol Sci A Pure Appl Chem 44:881–885

    Article  CAS  Google Scholar 

  246. An JK, Wang WB, Wang AQ (2010) Preparation and swelling properties of a pH-sensitive superabsorbent hydrogel based on psyllium gum. Starch/Stärke 62:501–507

    Article  CAS  Google Scholar 

  247. Abd Alla SG, Sen M, El-Naggar AWM (2012) Swelling and mechanical properties of superabsorbent hydrogels based on Tara gum/acrylic acid synthesized by gamma radiation. Carbohydr Polym 89(2):478–485

    Article  CAS  Google Scholar 

  248. Guilherme MR, Campese GM, Radovanovic E, Rubira AF, Feitosa JPA, Muniz EC (2005) Morphology and water affinity of superabsorbent hydrogels composed of methacrylated cashew gum and acrylamide with good mechanical properties. Polymer 46:7867–7873

    Article  CAS  Google Scholar 

  249. Favaro SL, de Oliveira F, Reis AV, Guilherme MR, Muniz EC, Tambourgi EB (2008) Superabsorbent hydrogel composed of covalently crosslinked gum arabic with fast swelling dynamics. J Appl Polym Sci 107:1500–1506

    Article  CAS  Google Scholar 

  250. Kaith BS, Jindal R, Mittal H (2010) Superabsorbent hydrogels from poly(acrylamide-co-acrylonitrile) grafted Gum ghatti with salt, pH and temperature responsive properties. Der Chemica Sinica 1(2):92–103

    CAS  Google Scholar 

  251. Pourjavadi A, Harzandi AM, Hosseinzadeh H (2004) Modified carrageenan 3. Synthesis of a novel polysaccharide-based superabsorbent hydrogel via graft copolymerization of acrylic acid onto kappa-carrageenan in air. Eur Polym J 40:1363–1370

    Article  CAS  Google Scholar 

  252. Salimi H, Pourjavadi A, Seidi F, Jahromi PE, Soleyman R (2010) New smart carrageenan-based superabsorbent hydrogel hybrid: investigation of swelling rate and environmental responsiveness. J Appl Polym Sci 117:3228–3238

    CAS  Google Scholar 

  253. Abd El-Mohdy HL, Abd El-Rehim HA (2009) Radiation synthesis of kappa-carrageenan/acrylamide graft copolymers as superabsorbents and their possible applications. J Polym Res 16:63–72

    Article  CAS  Google Scholar 

  254. Ademoh NA, Abdullahi AT (2010) Determination of optimal binding properties of grade 1 Nigerian acacia species for foundry moulding sand. Middle-East J Sci Res 5(5):402–406

    Google Scholar 

  255. Jordan WA (1966) Gum gel compositions and compositions and processes for their production. US Patent No. 3265631

    Google Scholar 

  256. Abdel-Halim ES, El-Rafie MH, Al-Deyab SS (2011) Polyacrylamide/guar gum graft copolymer for preparation of silver nanoparticles. Carbohydr Polym 85:692–697

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work is supported by the National Natural Science Foundation of China (Nos. 51003112 and 21107116).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aiqin Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wang, A., Wang, W. (2013). Gum-g-Copolymers: Synthesis, Properties, and Applications. In: Kalia, S., Sabaa, M. (eds) Polysaccharide Based Graft Copolymers. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36566-9_5

Download citation

Publish with us

Policies and ethics