Skip to main content

Starch-g-Copolymers: Synthesis, Properties and Applications

  • Chapter
  • First Online:
Polysaccharide Based Graft Copolymers

Abstract

Starch is one of the cheapest and most abundant natural carbohydrate biopolymers and is compatible with hydrocolloids and other water-soluble polymers. Therefore, it can be an effective component in multifunctional systems. To impart end use specific properties, starch is often modified. Chemical modification of starch by grafting various monomers onto it has been found attractive to impart desirable properties to starch without sacrificing its biological nature. Graft copolymerisation is one way to introduce biodegradability and improved properties to a polymer. Usually graft copolymerisation reactions are carried out by free radical initiated polymerisation reaction and in the literature different types of initiating systems are reported. Depending upon the type of monomers and the conditions employed the properties of the starch-graft-copolymers vary to a large extent. In this chapter, the various techniques used for the synthesis of starch-graft-copolymers, their properties and possible end uses are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tharanathan RN (1995) Polysaccharide gums of industrial importance—a review. J Sci Ind Res 54:512–523

    CAS  Google Scholar 

  2. Tharanathan RN (1995) Starch-the polysaccharide of high abundance and usefulness. J Sci Ind Res 54:452–458

    CAS  Google Scholar 

  3. Ramesh M, Mitchell JR, Harding SE (1999) Amylose content of rice starch. Starch/Stärke 51:311–313

    Article  CAS  Google Scholar 

  4. Tomasik P, Schilling CH (2004) Chemical modification of starch. Adv Carbohydr Chem Biochem 59:175–403

    Article  CAS  Google Scholar 

  5. Athawale VD, Lele V (2000) Synthesis and characterization of graft copolymers of maize starch and methacrylonitrile. Carbohydr Polym 41:407–416

    Article  CAS  Google Scholar 

  6. Athawale VD, Lele V (1998) Graft copolymerization onto starch. 3: grafting of acrylamide using ceric ion initiation and preparation of its hydrogels. Starch/Stärke 50:426–431

    Article  CAS  Google Scholar 

  7. Athawale VD, Lele V (1998) Graft copolymerization onto starch. II. Grafting of acrylic acid and preparation of it’s hydrogels. Carbohydr Polym 35(1–2):21–27

    Article  CAS  Google Scholar 

  8. Athawale VD, Rathi SC, Lele V (1998) Graft copolymerization onto maize starch. I. Grafting of methacrylamide using ceric ammonium nitrate as initiator. Eur Polym J 34(2):159

    Article  CAS  Google Scholar 

  9. Khalil MI, Bayazeed A, Farag S, Hebeish A (1987) Chemical modification of starch via reaction with acrylamide. Starch/Stärke 39:311–318

    Article  CAS  Google Scholar 

  10. Varma K, Singh OP, Sandle NK (1983) Graft-copolymerization of starch with acrylamide, 1. Angew Makromol Chem 119:183–192

    Article  CAS  Google Scholar 

  11. Kiatkamjornwong S, Mongkolsawat K, Sonsuk M (2002) Synthesis and property characterization of cassava starch grafted poly[acrylamide-co-(maleic acid)] superabsorbent via γ-irradiation. Polymer 43:3915–3924

    Article  CAS  Google Scholar 

  12. Lanthong P, Nuisin R, Kiatkamjornwong S (2006) Graft copolymerization, characterization and degradation of cassava starch-g-acrylamide/itaconic acid supersbsorbents. Carbohydr Polym 66:229–245

    Article  CAS  Google Scholar 

  13. Singh V, Tiwari A, Pandey S, Singh SK (2006) Microwave-accelerated synthesis and characterization of potato starch-g-poly(acrylamide). Starch/Stärke 58:536–543

    Article  CAS  Google Scholar 

  14. Athawale VD, Rathi SC (1999) Graft polymerization: starch as a model substrate. J Macromol Sci Rev Macromol Chem Phys 39(3):445–480

    Article  Google Scholar 

  15. Vázquez B, Goñi I, Gurruchaga M, Areízaga J, Valero M, Guzmán GM (1992) Ceric ion consumption in graft copolymerization of methacrylonitrile/methacrylate mixtures onto amylomaize. Die Makromolekulare Chemie 193(9):2189–2198

    Article  Google Scholar 

  16. Carr ME, Kim S, Yoon KJ, Stanley KD (1992) Graft polymerization of cationic methacrylate, acrylamide, and acrylonitrile monomers onto starch by reactive extrusion. Cereal Chem 69:70–75

    CAS  Google Scholar 

  17. Fares MM, El-faqeeh AS, Osman ME (2003) Graft copolymerization onto starch–I. Synthesis and optimization of starch grafted with N-tert-butylacrylamide copolymer and its hydrogels. J Polym Res 10(2):119–125

    Article  CAS  Google Scholar 

  18. Fanta GF, Felker FC, Shogren RL (2004) Graft polymerization of acrylonitrile onto spherocrystals formed from jet cooked cornstarch. Carbohydr Polym 56:77–84

    Article  CAS  Google Scholar 

  19. Maharana T, Singh BC (2006) Synthesis and characterization of biodegradable polyethylene by graft copolymerization of starch using glucose-Ce(IV) redox system. J Appl Polym Sci 100:3229–3239

    Article  CAS  Google Scholar 

  20. Jyothi AN, Sajeev MS, Moorthy SN, Sreekumar J (2010) Effect of graft-copolymerization with poly(acrylamide) on the thermal and rheological properties of cassava starch. J Appl Polym Sci 116(1):337–346

    CAS  Google Scholar 

  21. Ikhuoria EU, Folayan AS, Okieimen FE (2010) Studies in the graft copolymerization of acrylonitrile onto cassava starch by ceric ion induced initiation. Int J Biotechnol Mol Biol Res 1(1):10–14

    CAS  Google Scholar 

  22. Shukla JS, Sharma GK (1987) Graft copolymerization of methyl methacrylate onto wool initiated by ceric ammonium nitrate-thioglycolic acid redox couple in presence of air. J Polym Sci A Polym Chem 25:595–605

    Article  CAS  Google Scholar 

  23. Bhattacharyya SN, Maldas D (1984) Graft copolymerization onto cellulosics. Prog Polym Sci 10:171–270

    Article  CAS  Google Scholar 

  24. Hebeish A, El Alfy E, Bayazeed A (1988) Synthesis of vinyl polymer-starch composites to serve as size base materials. Starch/Stärke 40:191–196

    Article  CAS  Google Scholar 

  25. Taghizadeh MT, Mafakhery S (2001) Kinetics and mechanism of graft polymerization of acrylonitrile onto starch initiated with potassium persulfate. J Sci I R Iran 12(4):333–338

    CAS  Google Scholar 

  26. Bhuniya SP, Rahman MDS, Satyanand AJ, Gharia MM, Dave AM (2003) Novel route to synthesis of allyl starch and biodegradable hydrogel by copolymerizing allyl-modified starch with methacrylic acid and acrylamide. J Polym Sci A Polym Chem 41:1650–1658

    Article  CAS  Google Scholar 

  27. Mostafa KM, Samarkandy AR (2004) Synthesis of new thickener based on carbohydrate polymers for printing cotton fabrics with reactive dyes. J Biol Sci 4(3):334–341

    Article  Google Scholar 

  28. Keshava Murthy PS, MohanY M, Sreeramulu J, Mohana Raju K (2006) Semi-IPNs of starch and poly(acrylamide-co-sodium methacrylate): preparation, swelling and diffusion characteristics evaluation. React Funct Polym 66:1482–1493

    Article  CAS  Google Scholar 

  29. Bernd H, Bernd T, Thomas H, Bernhard J (2004) Cationic starch graft copolymers and novel process for the preparation of cationic starch graft copolymers. US Patent 20040170596

    Google Scholar 

  30. Wu YB, Lv CF, Han MN (2009) Synthesis and performance study of polybasic starch graft copolymerization function materials. In: Yin Y, Wang X (eds) Advanced materials research, vol 79–82., pp 43–46

    Google Scholar 

  31. Song H, Wu D, Zhang R-Q, Qiao L-Y, Zhang S-H, Lin S, Ye J (2009) Synthesis and application of amphoteric starch graft polymer. Carbohydr Polym 78(2):253–257

    Article  CAS  Google Scholar 

  32. Brockway CE, Moser KB (1963) Grafting of poly(methyl methacrylate) to granular corn starch. J Polym Sci A 1:1025

    Google Scholar 

  33. Celik M (2006) Preparation and characterization of starch-g-polymethacrylamide copolymers. J Polym Res 13:427–432

    Article  CAS  Google Scholar 

  34. Meshrama MW, Patila VV, Mhaskeb ST, Thorat BN (2009) Graft copolymers of starch and its application in textiles. Carbohydr Polym 75(1):71–78

    Article  CAS  Google Scholar 

  35. Khalil MI, Mostafa KM, Hebeish A (1990) Synthesis of poly(methacrylic acid-) starch graft copolymers using Mn-IV-acid system. Starch/Stärke 42:107–111

    Article  CAS  Google Scholar 

  36. Mehrotra R, Ranby B (1977) Graft copolymerization onto starch. I. Complexes of Mn3+ as initiators. J Appl Polym Sci 21(6):1647–1654

    Article  CAS  Google Scholar 

  37. Mostafa KM (1995) Graft polymerization of acrylic acid onto starch using potassium permanganate acid (redox system). J Appl Polym Sci 56(2):263–269

    Article  CAS  Google Scholar 

  38. Zhang C, Bao L, Tong Z (1994) Gaofenzi Cailiao Kexue Yu Gongcheng 10(1): 33

    Google Scholar 

  39. Zhang C, Bao L, Tong Z (1995) Chem Abstr 112:11235u

    Google Scholar 

  40. Gao J, Yu J, Wang W, Chang L, Tian R (1998) Graft copolymerization of starch-AN initiated by potassium permanganate. J Appl Polym Sci 68:1965–1972

    Article  CAS  Google Scholar 

  41. Zhang L, Gao J, Tian R, Yu J, Wang W (2003) Graft mechanism of acrylonitrile onto starch by potassium permanganate. J Appl Polym Sci 88(1):146–152

    Article  CAS  Google Scholar 

  42. Mostafa KM, Samarkandy AR, El-Sanabary AA (2009) Synthesis and characterization of poly (N-vinyl formamide)-pregelled starch-graft copolymer. J Polym Res (online). doi:10.1007/s10965-009-9370-z

  43. Maiti S, Ranjit S, Sa B (2010) Polysaccharide-based graft copolymers in controlled drug delivery. Int J Pharm Tech Res 2(2):1350–1358

    CAS  Google Scholar 

  44. Kiatkamjornwong S, Chomsaksakul W, Sonsuk M (2000) Radiation modification of water absorption of cassava starch by acrylic acid/acrylamide. Radiat Phys Chem 59(4):413–427

    Article  CAS  Google Scholar 

  45. Kiatkamjornwong S, Thakeow P, Sonsuk M (2001) Chemical modification of cassava starch for degradable polyethylene sheets. Polym Degrad Stab 73:363–375

    Article  CAS  Google Scholar 

  46. Abdel-Aal SE, Gad YH, Dessouki AM (2006) Use of rice straw and radiation-modified maize starch/acrylonitrile in the treatment of wastewater. J Hazard Mater 129(1–3):204–215

    Article  CAS  Google Scholar 

  47. Singh V, Tiwari A, Pandey S, Singh SK (2007) Peroxydisulfate initiated synthesis of potato starch-graft-poly(acrylonitrile) under microwave irradiation. Express Polym Lett 1(1):51–58

    Article  CAS  Google Scholar 

  48. Galema SA (1997) Microwave chemistry. Chem Soc Rev 26:233–238

    Article  CAS  Google Scholar 

  49. Singh V, Tiwari A, Sanghi R (2005) Studies on K2S2O8/ascorbic acid initiated synthesis of Ipomoea dasysperma seed gum-g-poly(acrylonitrile): a potential industrial gum. J Appl Polym Sci 98:1652–1662

    Article  CAS  Google Scholar 

  50. Mostafa KM, Samerkandy AR, El-Sanabay AA (2007) Modification of carbohydrate polymers part 2: grafting of methacrylamide onto pregelled starch using vanadium-mercaptosuccinic acid redox pair acrylamide based graft copolymers. J Appl Sci Res 3(8):681–689

    CAS  Google Scholar 

  51. Shogren RL, Willett JL, Biswas A (2009) HRP-mediated synthesis of starch–polyacrylamide graft copolymers. Carbohydr Polym 75:189–191

    Article  CAS  Google Scholar 

  52. Finkenstadt VL, Willett JL (2005) Reactive extrusion of starch-polyacrylamide graft copolymers: effects of monomer/starch ratio and moisture content. Macromol Chem Phys 206:1648–1652

    Article  CAS  Google Scholar 

  53. Frost K, Kaminski D, Shanks R (2009) Extrusion grafting of starch with reactive dyes to form sheets with reduced retrogradation. In: 33rd annual condensed matter and materials meeting. Wagga, NSW, Australia, 4–6 Feb. http://www.aip.org.au/Wagga

  54. Willett JL, Finkenstadt VL (2006) Reactive extrusion of starch-polyacrylamide graft copolymers using various starches. J Polym Environ 14:125–129

    Article  CAS  Google Scholar 

  55. Willett JL, Finkenstadt VL (2003) Preparation of starch-graft-polyacrylamide copolymers by reactive extrusion. Polym Eng Sci 43:1666

    Article  CAS  Google Scholar 

  56. Athawale VD, Rathi SC (1996) Graft polymerisation of N-methylol acrylamide onto starch using Ce4+ as initiator. J Polym Mater 13:335

    CAS  Google Scholar 

  57. Patil DR, Fanta GF (1993) Graft copolymerization of starch with methyl acrylate: an examination of reaction variables. J Appl Polym Sci 47(10):1765–1772

    Article  CAS  Google Scholar 

  58. Vera-Pacheco M, Vazquez-Torres H, Canche-Escamilla G (1993) Preparation and characterization of hydrogels obtained by grafting of acrylonitrile onto cassava starch by ceric ion initiation. J Appl Polym Sci 47:53–59

    Article  CAS  Google Scholar 

  59. Jideonwo A, Okieimen FE (2000) Graft copolymerization of methylacrylate onto gum Arabic, Niger. J Appl Sci 18:109–114

    Google Scholar 

  60. Fanta GF, Burr RC, Doane WM, Russell CR (1971) Influence of starch granule swelling on graft copolymer compositions. A comparison of monomers. J Appl Polym Chem 15:2651–2660

    Article  CAS  Google Scholar 

  61. Brandrup J, Immergut EH (1966) Polymer handbook. Wiley, New York, NY

    Google Scholar 

  62. Xiao C, Yang M (2006) Controlled preparation of physical cross-linked starch-g-PVA hydrogel. Carbohydr Polym 64:37–40

    Article  CAS  Google Scholar 

  63. Gao J, Tian R, Yu J, Duan M (1994) Graft copolymers of methyl methacrylate onto canna starch using manganic pyrophosphate as an initiator. J Appl Polym Sci 53(8):1091–1102

    Article  CAS  Google Scholar 

  64. Trimnell D, Fanta GF, Salch JH (1996) Graft polymerization of methyl acrylate onto granular starch: comparison of the Fe+2/H2O2 and ceric initiating systems. J Appl Polym Sci 60(3):285–292

    Article  CAS  Google Scholar 

  65. Vazquez B, Goni I, Gurruchaga M, Valero M, Guzman GM (1992) J Polym Sci A Polym Chem 30(8):1541

    Article  CAS  Google Scholar 

  66. Yao KJ, Tang YB (1992) Synthesis of starch-g-poly(acrylamide-co-sodium allyl sulfonate) and its application of flocculation to Kaolin suspension. J Appl Polym Sci 45(2):349–353

    Article  CAS  Google Scholar 

  67. Lu S, Duan M, Lin S (2003) Synthesis of superabsorbent starch-graft-poly(potassiumacrylate-co-acrylamide) and its properties. J Appl Polym Sci 88:1536–1542

    Article  CAS  Google Scholar 

  68. Gupta B, Anjum N (2003) Preparation of ion-exchange membranes by hydrolysis of radiation-grafted polyethylene-g-polyacrylamide membranes. J Appl Polym Sci 90:149

    Article  CAS  Google Scholar 

  69. Sahoo PK, Rana PK (2006) Synthesis and biodegradability of starch-g-ethyl methacrylate/sodium acrylate/sodium silicate superabsorbing composite. J Mater Sci 41:6470–6475

    Article  CAS  Google Scholar 

  70. Zhang Q, Xu K, P W (2008) Study on structure and molecular dynamics of starch/poly(sodium acrylate)-grafted superabsorbent by 13C solid state NMR. Fiber Polym 9(3):271–275

    Article  CAS  Google Scholar 

  71. Veregin RP, Fyfe CA, Marchessault RH, Taylor MG (1986) Characterization of the crystalline A and B starch polymorphs and investigation of starch crystallization by high-resolution carbon-13 CP/MAS NMR. Macromolecules 19:1030–1034

    Article  CAS  Google Scholar 

  72. Cheetham NWH, Leping T (1998) Solid state NMR studies on the structural and conformational properties of natural maize starches. Carbohydr Polym 36:285–292

    Article  CAS  Google Scholar 

  73. Paris M, Bizot H, Emery J, Buzare JY, Buleon A (2001) NMR local range investigations in amorphous starchy substrates I. Structural heterogeneity probed by (13)C CP-MAS NMR. Int J Biol Macromol 29:127–136

    Article  CAS  Google Scholar 

  74. Chen Q, Kurosu H, Ma L, Matsuo M (2002) Elongation-induced phase separation of poly(vinyl alcohol)/poly(acrylic-acid) blends as studied by 13C CP/MAS NMR and wide-angle X-ray diffraction. Polymer 43:1203–1206

    Article  CAS  Google Scholar 

  75. Miyoshi T, Takegoshi K, Hikichi K (1996) High-resolution solid-state 13C nuclear magnetic resonance study of a polymer complex: poly(methacrylic acid)/poly(ethylene oxide). Polymer 37:11–18

    Article  CAS  Google Scholar 

  76. Tripathy T, De RB (2006) Flocculation: a new way to treat the waste water. J Phys Sci 10:93–127

    Google Scholar 

  77. Castle D, Richard A, Audebert RJ (1990) Swelling of anionic and cationic starch-based superabsorbents in water and saline solution. J Appl Polym Sci 39(1):11–29

    Article  Google Scholar 

  78. Mostafa KM, El-Sanabary AA (1997) Carboxyl containing starch and hydrolyzed starch derivatives as size base materials for cotton textiles. Polym Degrad Stab 55(2):181–184

    Article  CAS  Google Scholar 

  79. Cheng Y, Brown KM, Prudhome RK (2002) Preparation and characterization of molecular weight fractions of guar galactomannans using acid and enzymatic hydrolysis. Int J Biol Macromol 31:29–35

    Article  CAS  Google Scholar 

  80. Picout DR, Murphy SBR, Errington N, Harding SE (2001) Pressure cell assisted solution characterization of polysaccharides.1. Guar gum. Biomacromolecules 2:1301–1309

    Article  CAS  Google Scholar 

  81. Dragunski DC, Pawlicka A, Carlos S (2001) Preparation and characterization of starch grafted with toluene poly(propylene oxide) diisocyanate. Mater Res 4(2):77–81, 1516-1439

    Article  CAS  Google Scholar 

  82. Athawale VD, Lele V (2000) Thermal studies on granular maize starch and its graft copolymers with vinyl monomers. Starch/Stärke 52:205–213

    Article  CAS  Google Scholar 

  83. Wang XL, Yang KK, Wang YZ, Chen DQ, Chen SC (2004) Crystallization and morphology of starch-g-poly(1,4-dioxan-2-one) copolymers. Polymer 45:7961–7968

    Article  CAS  Google Scholar 

  84. Gupta B, Anjum N (2001) Development of membranes by radiation grafting of acrylamide into polyethylene films: characterization and thermal investigations. J Appl Polym Sci 82:2629

    Article  CAS  Google Scholar 

  85. Jyothi AN, Sreekumar J, Moorthy SN (2010) Response surface methodology for the optimization and characterization of cassava starch-graft-poly(acrylamide). Starch/Stärke 62:18–27

    Article  CAS  Google Scholar 

  86. Kennedy JF, Cabral JMS, Sa´-Correia I, White CA (1987) Starch biomass: a chemical feedstock for enzyme and fermentation process. In: Galliard T (ed) Starch: properties and potential, vol 13. Wiley, New York, NY, p 123

    Google Scholar 

  87. Abraham J, Pillai VNR (1996) Membrane-encapsulated controlled-release urea fertilizers basedon acrylamide copolymers. J Appl Polym Sci 60:2347–2351

    Article  CAS  Google Scholar 

  88. Renken A, Hunkeler D (1999) Effect of the surfactant blend composition on the properties of polymerizing acrylamide-based inverse-emulsions: characterization by small-angle neutron scattering and quasi-elastic light scattering. Polymer 40:3545–3554

    Article  CAS  Google Scholar 

  89. Goin J (1991) Water soluble polymers. CEH Marketing research report 582.0000 D-E. August, SRI International

    Google Scholar 

  90. Hunkeler D, Hernandez-Barajas J (1996) A concise review of the influence of synthesis and technological factors on the structure and properties of polyacrylamides. In: Industrial water soluble polymers. ACS symposium series, p 11–27

    Google Scholar 

  91. Karmakar GP, Singh RP (1996) Synthesis and application of polymeric flocculants for the treatment of paper mill effluents. In: Advances in Chemical Engineering, Allied Publishers, New Delhi, p 201

    Google Scholar 

  92. Karmakar GP, Singh RP (1996) Synthesis and characterisation of starch-g-acrylamide copolymers for improved oil recovery. In: International Symposium on Oilfield Chemistry, Houston, Texas, 18–21 February 1997

    Google Scholar 

  93. Karmakar NC, Sastry BS, Singh RP (2002) Flocculation of chromite ore fines suspension using polysaccharide based graft copolymers. Bull Mater Sci 25(6):477–478

    Article  CAS  Google Scholar 

  94. Sharma BR, Dhuldhoya NC, Merchant UC (2006) Flocculants – an ecofriendlya pproach. J Polym Environ 14:196–202

    Article  CAS  Google Scholar 

  95. Deshmukh SR, Singh RP (1986) Drag reduction characteristics of graft copolymers of xanthangum and polyacrylamide. J Appl Polym Sci 32:6163

    Article  CAS  Google Scholar 

  96. Fanta GF, Burr RC, Russel CR, Rist RE (1970) Graft copolymers of starch and poly (2-hydroxy-3-methycryloxy propyl trimethyl ammonium chloride) preparation and testing as flocculating agents. J Appl Polym Sci 14:2601

    Article  CAS  Google Scholar 

  97. Fanta GF, Burr RC, Russell CR, Rist CE (1970) Graft copolymers of starch and poly(2-hydroxy-3-methacryloyloxypropyltrimethylammonium chloride): preparation and testing as flocculating agents. J Appl Polym Sci 14:2601–2607

    Article  CAS  Google Scholar 

  98. Deshmukh SR (1986) Turbulent drag reduction effectiveness, shear stability and biodegradability of graft copolymers. Ph.D. Thesis, IIT, Kharagpur, India

    Google Scholar 

  99. Karmakar GP (1994) Flocculation and rheological properties of grafted polysaccharides. Ph.D. Thesis, IIT, Kharagpur, India

    Google Scholar 

  100. Fanta GF, Burr RC, Doane WM, Russel CR (1972) Graft copolymers of starch with mixtures of acrylamide and the nitric acid salt of dimethyl aminomethyl methacrylate. J Appl Polym Sci 16:2835

    Article  CAS  Google Scholar 

  101. Rath SK, Singh RP (1997) Flocculation characteristics of grafted and un grafted starch, amylose, and amylopectin. J Appl Polym Sci 66(9):1721–1729

    Article  CAS  Google Scholar 

  102. Fanta GF, Doane WM (1986) Grafted starches. In: Wurzburg OB (ed) Modified starches: properties and uses. CRC, Boca Raton, FL, pp 149–178

    Google Scholar 

  103. Kuilin D, Na J, Yaqin Z, Dawei Y, Duanmin H (2006) Adsorption behaviors of copper (II) and lead (II) ions by crosslinked starch graft copolymer with aminoethyl group. Chem J Internet 8(11):68

    Google Scholar 

  104. Hao X, Chang Q, Duan L, Zhang Y (2007) Synergetically acting new flocculants on the basis of starch-graft-poly(acrylamide)-co-sodium xanthate. Starch/Stärke 59:251–257

    Article  CAS  Google Scholar 

  105. Singh RP, Tripathy T, Karmakar GP, Rath SK, Karmakar NC, Pandey SR, Kannan K, Jain SK, Lan NT (2000) Novel biodegradable flocculants based on polysaccharides. Curr Sci 78(7):798–803

    CAS  Google Scholar 

  106. Dickinson E, Eriksson L (1991) Particle flocculation by adsorbing polymers. Adv Colloid Interface Sci 34:1–29

    Article  CAS  Google Scholar 

  107. Riaz MN (1999) Processing biodegradable packaging materials from starches using extrusion technology. Cereal Food World 44:705–709

    CAS  Google Scholar 

  108. Shogren RL, Fanta GF, Doane WM (1993) Development of starch based plastics—a reexamination of selected polymer systems in historical perspective. Starch/Stärke 45:276–280

    Article  CAS  Google Scholar 

  109. Saroja N, Shamala TR, Tharanathan RN (2000) Biodegradation of starch-g-polyacrylonitrile, a packaging material, by Bacillus cereus. Process Biochem 36(1–2):119–125

    Article  CAS  Google Scholar 

  110. Halley P, Rutgers R, Coombs S, Kettels J, Gralton J, Christie G, Jenkins M, Beh H, Griffin K, Jayasekara R, Lonergan G (2001) Developing biodegradable mulch films from starch-based polymers. Starch/Stärke 53:362–367

    Article  CAS  Google Scholar 

  111. Buchholz FL, Peppas NA (1994) Superabsorbent polymers science and technology. American Chemical Society, Washington, DC

    Book  Google Scholar 

  112. Toyama M (1990) Chemistry 45(2):108–110, Japanese

    Google Scholar 

  113. Lutfor MR, Sidik WYWMZ, Ab Rahman MZ, Mansoor A, Jelas H (2001) Preparation and swelling of polymeric absorbent containing hydroxamic acid group from polymer grafted sago starch. Carbohydr Polym 45:95–100

    Article  CAS  Google Scholar 

  114. Doane SW, Doane WM (2004) Starch graft copolymers and methods of making and using starch graft copolymers for agriculture. WO/2004/033536

    Google Scholar 

  115. Qunyi T, Ganwei Z (2005) Rapid synthesis of a superabsorbent from a saponified starch and acrylonitrile/AMPS graft copolymers. Carbohydr Polym 62:74–79

    Article  CAS  Google Scholar 

  116. Talaat HA, Sorour MH, Aboulnour AG, Shaalan HF, Ahmed EM, Awad AM, Ahmed MA (2008) Development of a multi-component fertilizing hydrogel with relevant techno-economic indicators. Am Eurasian J Agric Environ Sci 3(5):764–770

    Google Scholar 

  117. Savich MH, Olson GS, Clark EW (2009) WO/2009/014824

    Google Scholar 

  118. Zhang L (2001) A review of starches and their derivatives for oilfield applications in China. Starch/Stärke 53(9):401–440

    Article  Google Scholar 

  119. Yao KJ, Wang M (1987) Synthesis of starch-g-polyacrylamide for oil field drilling treatments. Oilfield Chem 4:175–179

    Google Scholar 

  120. Guo JA (1996) Synthesis and performance of heat-resistant and salt tolerant filtrate loss reducer based on grafted starch. Oilfield Chem 13:169–171

    Google Scholar 

  121. Song H, Zhang SF, Ma XC, Wang DZ, Yang JZ (2007) Synthesis and application of starch-graft-poly(AM-co-AMPS) by using a complex initiation system of CS-APS. Carbohydr Polym 69(1):189–195

    Article  CAS  Google Scholar 

  122. Eutamene M, Benbakhti A, Khodja M, Jada A (2009) Preparation and aqueous properties of starch-grafted polyacrylamide copolymers. Starch/Starke 61(2):81–91

    Article  CAS  Google Scholar 

  123. Mostfa KM, Morsy MS (2004) Tailoring a new sizing agent via structural modification of pregelled starch molecules, Part 1: carboxymethylation and grafting. Starch/Stärke 56:254–261

    Article  CAS  Google Scholar 

  124. Kuraray Co Ltd. (1982) Japan Patent 82 47,339. Abstr. 97(1982) 44362b

    Google Scholar 

  125. Yamamoto K, Watanabe T, Yamamoto T (1994) Japan Patent 06,00,201. Abstr. 120 (1944) 173553g

    Google Scholar 

  126. Mori M (1997) Release controlled transdermal therapeutic system. US Patent 569577

    Google Scholar 

  127. McDermott MR, Heritage PL, Bartzoka V, Brook MA (1998) Polymer-grafted starch microparticles for oral and nasal immunization. Immunol Cell Biol 76:256–262

    Article  CAS  Google Scholar 

  128. Geresh S, Gdalevsky GY, Gilboa I, Voorspoels J, Remon JP, Kost J (2004) Bioadhesive grafted starch copolymers as platforms for peroral drug delivery: a study of theophylline release. J Control Release 94:391–399

    Article  CAS  Google Scholar 

  129. Saboktakin MR, Maharramov A, Ramazanov MA (2007) Modification of carboxymethyl starch as nano carriers for oral drug delivery. Nat Sci 5(3):67

    Google Scholar 

  130. Shaikh MM, Lonikar SV (2009) Starch–acrylics graft copolymers and blends: synthesis, characterization, and applications as matrix for drug delivery. J Appl Polym Sci 114(5):2893–2900

    Article  CAS  Google Scholar 

  131. Marinich JA, Ferrero C, Jiménez-Castellanos MR (2009) Graft copolymers of ethyl methacrylate on waxy maize starch derivatives as novel excipients for matrix tablets: physicochemical and technological characterisation. Eur J Pharm Biopharm 72(1):138–147

    Article  CAS  Google Scholar 

  132. Silva I, Gurruchaga M, Goñi I (2009) Physical blends of starch graft copolymers as matrices for colon targeting drug delivery systems. Carbohydr Polym 76:593–601

    Article  CAS  Google Scholar 

  133. Saboktakin MR, Maharramov A, Ramazanov MA (2009) pH-sensitive starch hydrogels via free radical graft copolymerization, synthesis and properties. Carbohydr Polym 77(3):634–638

    Article  CAS  Google Scholar 

  134. Lu F, Wang X-L, Chen S-C, Yang K-K, Wang Y-Z (2009) An efficient approach to synthesize polysaccharides-graft-poly(p-dioxanone) copolymers as potential drug carriers. J Polym Sci A Polym Chem 47:5344–5353

    Article  CAS  Google Scholar 

  135. Chen L, Qiu XY, Xie ZG, Hong ZK, Sun JR, Chen XS, Jing XB (2006) Poly(L-lactide)/starch blends compatibilized with poly(L-lactide)-g-starch copolymer. Carbohydr Polym 65:75–80

    Article  CAS  Google Scholar 

  136. Choi E-J, Kim C-H, Park J-K (1999) Structure-property relationship in PCL/starch blend compatibilized with starch-g-PCL copolymer. J Polym Sci B Polym Phys 37:2430–2438

    Article  CAS  Google Scholar 

  137. Chen L, Xie ZG, Zhuang XL, Chen XS, Jing XB (2008) Controlled release of urea encapsulated by starch-g-poly(L-lactide). Carbohydr Polym 72:342–348

    Article  CAS  Google Scholar 

  138. Choi E-J, Kim C-H, Park J-K (1999) Synthesis and characterization of starch-g-polycaprolactone copolymer. Macromolecules 32:7402–7408

    Article  CAS  Google Scholar 

  139. Dubois P, Krishnan M, Narayan R (1999) Aliphatic polyester grafted starch-like polysaccharides by ring-opening polymerization. Polymer 40:3091–3100

    Article  CAS  Google Scholar 

  140. Xu Q, Kennedy JF, Liu LJ (2008) An ionic liquid as reaction media in the ring opening graft polymerization of ε-caprolactone onto starch granules. Carbohydr Polym 72:113–121

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Jyothi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jyothi, A.N., Carvalho, A.J.F. (2013). Starch-g-Copolymers: Synthesis, Properties and Applications. In: Kalia, S., Sabaa, M. (eds) Polysaccharide Based Graft Copolymers. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36566-9_3

Download citation

Publish with us

Policies and ethics