Skip to main content

Imaging Localised Prostate Carcinoma

  • Chapter
  • First Online:
Interstitial Prostate Brachytherapy
  • 1220 Accesses

Abstract

Until recently, imaging has played a relatively small role in the management of clinically localised prostate cancer. Improvements in both sensitivity and specificity have helped integrate a range of medical imaging techniques, such as transrectal ultrasound (TRUS), computed tomography (CT), magnetic resonance imaging (MRI), and radioisotopes scanning into clinical practice, and these techniques have now established specific roles in the management of patients being assessed and treated with brachytherapy. Newer functional imaging techniques including positron emission tomography (PET) together with molecular imaging developments will further improve our ability to diagnose stage and appropriately treat men with prostate cancer. This chapter will review the role of imaging in localised prostate cancer and consider the specific applications in the practice of prostate brachytherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aigner F, Mitterberger M, Rehder P et al (2010) Status of transrectal ultrasound imaging of the prostate. J Endourol 24:685–691

    Article  PubMed  Google Scholar 

  • Akin O, Sala E, Moskowitz C et al (2006) Transition zone prostate cancers: features, detection, localization, and staging at endorectal MR imaging. Radiology 239(3):784–792

    Article  PubMed  Google Scholar 

  • Alonzi R, Padhani A, Allen C (2007) Dynamic contrast enhanced MRI in prostate cancer. Eur J Radiol 63(3):335–350

    Article  PubMed  Google Scholar 

  • Ashley R, Inman B, Routh J et al (2008) Reassessing the diagnostic yield of saturation biopsy of the prostate. Eur Urol 53(5):976–981

    Article  PubMed  Google Scholar 

  • Bander N, Milowsky M, Nanus D et al (2005) Phase I trial of 177lutetium-labeled J591, a monoclonal antibody to prostate-specific membrane antigen, in patients with androgen-independent prostate cancer. J Clin Oncol 23:4591–4601

    Article  PubMed  CAS  Google Scholar 

  • Beerlage H, Aarnink R, Ruijter E et al (2001) Correlation of transrectal ultrasound, computer analysis of transrectal ultrasound and histopathology of radical prostatectomy specimen. Prostate Cancer Prostatic Dis 4:56–62

    Article  PubMed  Google Scholar 

  • Beheshti M, Imamovic L, Broinger G et al (2010) 18F Choline PET/CT in the preoperative staging of prostate cancer in patients with intermediate or high risk of extracapsular disease: a prospective study of 130 patients. Radiology 25:925–933

    Article  Google Scholar 

  • Bonekamp D, Macura K (2008) Dynamic contrast-enhanced magnetic resonance imaging in the evaluation of the prostate. Top Magn Reson Imaging 19(6):273–284

    Article  PubMed  Google Scholar 

  • Braeckmann J, Autier Garbar C et al (2008a) Computer-aided ultrasonography (HistoScanning): a novel technology for locating and characterizing prostate cancer. BJU Int 101(3):293–298

    Article  Google Scholar 

  • Braeckmann J, Autier P, Soviany C et al (2008b) The accuracy of transrectal ultrasonography supplemented with computer-aided ultrasonometry for detecting small prostate cancers. BJU Int 102:1560–1565

    Article  Google Scholar 

  • Catalona W, Richie J, Ahmann F et al (1994) Comparison of digital rectal examination and serum prostate specific antigen in the early detection of prostate cancer: results of a multicenter clinical trial of 6,630 men. J Urol 151(5):1283–1290

    PubMed  CAS  Google Scholar 

  • Cornud F, Hamida K, Flam T et al (2000) Endorectal color doppler sonography and endorectal MR imaging features of nonpalpable prostate cancer: correlation with radical prostatectomy findings. Am J Roentgenol 75:1161–1168

    Article  Google Scholar 

  • Cruz M, Tsuda K, Narumi Y et al (2002) Characterization of low-intensity lesions in the peripheral zone of prostate on pre-biopsy endorectal coil MR imaging. Eur Radiol 12(2):357–365

    Article  PubMed  CAS  Google Scholar 

  • Dickinson L, Ahmed H, Allen C et al (2011) Magnetic resonance imaging for the detection, localisation, and characterisation of prostate cancer: recommendations from a European consensus meeting. Eur Urol 59(4):477–494

    Article  PubMed  Google Scholar 

  • Djavan B, Ravery V, Zlotta A et al (2001) Prospective evaluation of prostate cancer detected on biopsies 1, 2, 3 and 4: when should we stop? J Urol 66(5):1679–1683

    Google Scholar 

  • Donovan J, Hamdy F, Neal D et al (2003) Prostate Testing for Cancer and Treatment (ProtecT) feasibility study. Health Technol Assess 14:1–88

    Google Scholar 

  • Eggener S, Salomon G, Scardino P et al (2010) Focal therapy for prostate cancer: possibilities and limitations. Eur Urol 58(1):e1–e18

    Article  Google Scholar 

  • Eggert T, Khaled W, Wenske S et al (2008) Impact of elastography in clinical diagnosis of prostate cancer. A comparison of cancer detection between B-mode sonography and elastography-guided 10-core biopsies. Urologe A 47(9):1212–1217

    Article  PubMed  CAS  Google Scholar 

  • Eggert T, Brock M, Noldus J et al (2010) Rising PSA level and negative prostate biopsy. Can prostate elastography help? Urologe A 49(3):376–380

    Article  PubMed  CAS  Google Scholar 

  • Even-Sapir E, Martin R, Barnes D et al (1993) Role of SPECT in differentiating malignant from benign lesions in the lower thoracic and lumbar vertebrae. Radiology 187:193–198

    PubMed  CAS  Google Scholar 

  • Franiel T, Lüdemann L, Rudolph B et al (2008) Evaluation of normal prostate tissue, chronic prostatitis, and prostate cancer by quantitative perfusion analysis using a dynamic contrast-enhanced inversion-prepared dual-contrast gradient echo sequence. Invest Radiol 43(7):481–487

    Article  PubMed  Google Scholar 

  • Fütterer J, Heijmink S, Scheenen T et al (2006) Prostate cancer localization with dynamic contrast-enhanced MR imaging and proton MR spectroscopic imaging. Radiology 241(2):449–458

    Article  PubMed  Google Scholar 

  • Halpern E, Frauscher F, Strup S et al (2002) Prostate: high-frequency Doppler US imaging for cancer detection. Radiology 225:71–77

    Article  PubMed  Google Scholar 

  • Halpern E, Ramey J, Strup S et al (2005) Detection of prostate carcinoma with contrast-enhanced sonography using intermittent harmonic imaging. Cancer 104:2373–2383

    Article  PubMed  Google Scholar 

  • Heerschap A, Jager G, van der Graaf M et al (1997) In vivo proton MR spectroscopy reveals altered metabolite content in malignant prostate tissue. Anticancer Res 17(3A):1455–1460

    PubMed  CAS  Google Scholar 

  • Hoeks C, Barentsz J, Hambrock T et al (2011) Prostate cancer: multiparametric MR imaging for detection, localization, and staging. Radiology 261:46–66

    Article  PubMed  Google Scholar 

  • Hricak H, Dooms G, McNeal J et al (1987) MR imaging of the prostate gland: normal anatomy. Am J Roentgenol 148(1):51–58

    Article  CAS  Google Scholar 

  • Hricak H, Choyke P, Eberhardt S et al (2007) Imaging prostate cancer: a multidisciplinary perspective. Radiology 243:28–53

    Article  PubMed  Google Scholar 

  • Jacobs M, Ouwerkerk R, Petrowski K et al (2008) Diffusion-weighted imaging with apparent diffusion coefficient mapping and spectroscopy in prostate cancer. Top Magn Reson Imaging 19(6):261–272

    Article  PubMed  Google Scholar 

  • Katahira K, Takahara T, Kwee T et al (2011) Ultra-high-b-value diffusion-weighted MR imaging for the detection of prostate cancer: evaluation in 201 cases with histopathological correlation. Eur Radiol 21(1):188–196

    Article  PubMed  Google Scholar 

  • Kim C, Park B, Lee H et al (2007) Value of diffusion-weighted imaging for the prediction of prostate cancer location at 3T using a phased-array coil: preliminary results. Invest Radiol 42(12):842–847

    Article  PubMed  Google Scholar 

  • Kim H, Kim J, Kim K et al (2009) Prostate cancer: apparent diffusion coefficient map with T2-weighted images for detection-a multireader study. Radiology 250(1):145–151

    Article  PubMed  Google Scholar 

  • Korporaal J, van den Berg C, Groenendaal G et al (2010a) The use of probability maps to deal with the uncertainties in prostate cancer delineation. Radiother Oncol 94(2):168–172

    Article  PubMed  Google Scholar 

  • Korporaal J, van den Berg C, Jeukens C et al (2010b) Dynamic contrast-enhanced CT for prostate cancer: relationship between image noise, voxel size, and repeatability. Radiology 256:976–984

    Article  PubMed  Google Scholar 

  • Kuligowska E, Barish M, Fenlon H et al (2001) Predictors of prostate carcinoma: accuracy of grayscale and color Doppler US and serum markers. Radiology 2001(220):757–764

    Article  Google Scholar 

  • Langer D, van der Kwast T, Evans A et al (2008) Intermixed normal tissue within prostate cancer: effect on MR imaging measurements of apparent diffusion coefficient and T2-sparse versus dense cancers. Radiology 249(3):900–908

    Article  PubMed  Google Scholar 

  • Lee S, Park K, Choi K et al (2010) Is endorectal coil necessary for the staging of clinically localized prostate cancer? Comparison of non-endorectal versus endorectal MR imaging. World J Urol 28(6):667–672

    Article  PubMed  Google Scholar 

  • Liu I, Zafar M, Lai Y et al (2001) Fluorodeoxyglucose positron emission tomography studies in diagnosis and staging of clinically organ-confined prostate cancer. Urology 57:108–111

    Article  PubMed  CAS  Google Scholar 

  • McNeal J (1981) The zonal anatomy of the prostate. Prostate 2(1):35–49

    Article  PubMed  CAS  Google Scholar 

  • Meerleer G, Villeirs G, Bral S et al (2005) The magnetic resonance detected intraprostatic lesion in prostate cancer: planning and delivery of intensity-modulated radiotherapy. Radiother Oncol 75(3):325–333

    Article  Google Scholar 

  • Mueller-Lisse U, Scherr M (2007) Proton MR spectroscopy of the prostate. Eur J Radiol 63(3):351–360

    Article  PubMed  Google Scholar 

  • Noguchi M, Stamey T, McNeal J et al (2001) Relationship between systematic biopsies and histological features of 222 radical prostatectomy specimens: lack of prediction of tumour significance for men with nonpalpable prostate cancer. J Urol 66(1):104–109

    Google Scholar 

  • Norberg M, Egevad L, Holmberg L et al (1997) The sextant protocol for ultrasound-guided core biopsies of the prostate underestimates the presence of cancer. Urology 50:562–566

    Article  PubMed  CAS  Google Scholar 

  • Novara G, Boscolo-Berto R, Lamon C, Ficarra S et al (2010) Detection rate and factors predictive the presence of prostate cancer in patients undergoing ultrasonography-guided transperineal saturation biopsies of the prostate. BJU Int 105(9):1242–1246

    Article  PubMed  CAS  Google Scholar 

  • Padhani A, Harvey C, Cosgrove D (2005) Angiogenesis imaging in the management of prostate cancer. Nat Clin Pract Urol 2(12):596–607

    Article  PubMed  Google Scholar 

  • Partin A, Mangold L, Lamm D et al (2001) Contemporary update of prostate cancer staging nomograms (Partin Tables) for the new millennium. Urology 58(6):843–848

    Article  PubMed  CAS  Google Scholar 

  • Picchio M, Gionannini E, Crivellaro C et al (2010) Clinical evidence on PET/CT for radiation therapy planning in prostate cancer. Radiother Oncol 96(3):347–350

    Article  PubMed  Google Scholar 

  • Pucar D, Hricak H, Shukla-Dave A et al (2007) Clinically significant prostate cancer local recurrence after radiation therapy occurs at the site of primary tumour: magnetic resonance imaging and step-section pathology evidence. Int J Radiat Oncol Biol Phys 69:62–69

    Article  PubMed  Google Scholar 

  • Qayyum A, Coakley F, Lu Y et al (2004) Organ-confined prostate cancer: effect of prior transrectal biopsy on endorectal MRI and MR spectroscopic imaging. AJR Am J Roentgenol 183(4):1079–1108

    Article  PubMed  Google Scholar 

  • Rifkin M, Zerhouni E, Gatsonis C et al (1990) Comparison of magnetic resonance imaging and ultrasonography in staging early prostate cancer: results of a multi-institutional cooperative trial. N Engl J Med 323:621–626

    Article  PubMed  CAS  Google Scholar 

  • Salomon G, Graefen M, Heinzer H et al (2009) The value of real-time elastography in the diagnosis of prostate cancer. Urologe A 48(6):628–636

    Article  PubMed  CAS  Google Scholar 

  • Scheenen T, Klomp D, Röll S et al (2004) Fast acquisition-weighted three-dimensional proton MR spectroscopic imaging of the human prostate. Magn Reson Med 52(1):80–88

    Article  PubMed  CAS  Google Scholar 

  • Schettino C, Kramer E, Noz M et al (2004) Impact of fusion of indium-111 capromab pendetide volume data sets with those from MRI or CT in patients with recurrent prostate cancer. AJR Am J Roentgenol 183:519–524

    Article  PubMed  Google Scholar 

  • Schröder F, van der Maas P, Beemsterboer P et al (1998) Evaluation of the digital rectal examination as a screening test for prostate cancer. Rotterdam section of the European Randomized Study of Screening for Prostate Cancer. J Natl Cancer Inst 90(23):1817–1823

    Article  PubMed  Google Scholar 

  • Schröder F, Carter H, Wolters T et al (2008) Early detection of prostate cancer. Part 1: PSA and PSA kinetics. Eur Urol 53(3):468–477

    Article  PubMed  Google Scholar 

  • Sciarra A, Barentsz J, Bjartelli A et al (2011) Advances in magnetic resonance imaging: how they are changing the management of prostate cancer. Eur Urol 59(6):962–977

    Article  PubMed  Google Scholar 

  • Simmons L, Autier P, Zatura F et al (2012) Detection, localisation and characterisation of prostate cancer by Prostate HistoScanning. BJU Int 110(1):28–35

    Article  PubMed  Google Scholar 

  • Spethmann J, Graefen M, Beckmann A et al (2010) Accuracy of computer-aided transrectal ultrasonography detection (HistoScanning) of prostate cancer in the predication of a negative margin in radical prostatectomy patients. Eur Urol Suppl 9(2):65, 103

    Article  Google Scholar 

  • Tomoaki M, Masakazu T, Takeshi T et al (2009) Real-time elastography for the diagnosis of prostate cancer: evaluation of elastographic moving images. Jpn J Clin Oncol 39(6):394–398

    Article  Google Scholar 

  • Trabulsi E, Sackett D, Gomella L et al (2010) Enhanced transrectal ultrasound modalities in the diagnosis of prostate cancer. Urology 76(5):1025–1033

    Article  PubMed  Google Scholar 

  • Wang L, Mazaheri Y, Zhang J et al (2008) Assessment of biologic aggressiveness of prostate cancer: correlation of MR signal intensity with Gleason grade after radical prostatectomy. Radiology 246(1):168–176

    Article  PubMed  Google Scholar 

  • Watanabe H, Kato H, Kato T et al (1968) Diagnostic application of ultrasonography to the prostate [in Japanese]. Nippon Hinyokika Gakkai Zasshi 59:273–279

    PubMed  CAS  Google Scholar 

  • Weber D, Wang H, Cozzi L et al (2009) RapidArc, intensity modulated photon and proton techniques for recurrent prostate cancer in previously irradiated patients: a treatment planning comparison study. Radiat Oncol 4:34

    Article  PubMed  Google Scholar 

  • Zelhof B, Pickles M, Liney G et al (2009) Correlation of diffusion-weighted magnetic resonance data with cellularity in prostate cancer. BJU Int 103(7):883–888

    Article  PubMed  Google Scholar 

  • Zheng Q, Gardner T, Raikwar S et al (2004) [11C]Choline as a PET biomarker for assessment of prostate cancer tumor models. Bioorg Med Chem 12(11):2887–2893

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brendan M. Carey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Carey, B.M. (2013). Imaging Localised Prostate Carcinoma. In: Kovács, G., Hoskin, P. (eds) Interstitial Prostate Brachytherapy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36499-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36499-0_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36498-3

  • Online ISBN: 978-3-642-36499-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics