Skip to main content

Postimplant Dosimetry

  • Chapter
  • First Online:
Interstitial Prostate Brachytherapy
  • 1203 Accesses

Abstract

Also in the era of transperineal transrectal ultrasound-guided implant techniques for permanent prostate brachytherapy, postimplant dosimetry remains a powerful tool to control, improve, and assure the quality of the implants. The various aspects of postimplant dosimetry are described: prostate edema resolution dynamics and optimal timing to perform postimplant dosimetry, the use of different imaging modalities, recommendations for reporting, and the outcome of various postimplant dosimetry studies. Postimplant dosimetry remains the standard of care in permanent prostate brachytherapy, preferably based on magnetic resonance imaging 4 weeks postimplant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acher P, Rhode K, Morris S et al (2008) Comparison of combined x-ray radiography and magnetic resonance (XMR) imaging-versus computed tomography-based dosimetry for the evaluation of permanent prostate brachytherapy implants. Int J Radiat Oncol Biol Phys 71:1518–1525

    Article  PubMed  Google Scholar 

  • Acher P, Puttagunta S, Rhode K et al (2010) An analysis of intraoperative versus post-operative dosimetry with CT, CT-MRI fusion and XMR for the evaluation of permanent prostate brachytherapy implants. Radiother Oncol 96:166–171

    Article  PubMed  Google Scholar 

  • Al-Qaisieh B, Ash D, Bottomley DM et al (2002) Impact of prostate volume evaluation by different observers on CT-based postimplant dosimetry. Radiother Oncol 62:267–273

    Article  PubMed  Google Scholar 

  • Al-Qaisieh B, Smith DW, Brearley E et al (2007) Comprehensive I-125 multi-seed comparison for prostate brachytherapy: dosimetry and visibility analysis. Radiother Oncol 84:140–147

    Article  PubMed  Google Scholar 

  • Al-Qaisieh B, Witteveen T, Carey B et al (2009) Correlation between pre- and postimplant dosimetry for iodine-125 seed implants for localized prostate cancer. Int J Radiat Oncol Biol Phys 75:626–630

    Article  PubMed  CAS  Google Scholar 

  • Altschuler MD, Findlay PA, Epperson RD (1983) Rapid, accurate, three-dimensional location of multiple seeds in implant radiotherapy treatment planning. Phys Med Biol 28:1305–1318

    Article  PubMed  CAS  Google Scholar 

  • Amols HI, Rosen II (1981) A three-film technique for reconstruction of radioactive seed implants. Med Phys 8:210–214

    Article  PubMed  CAS  Google Scholar 

  • Anagnostopoulos G, Baltas D, Karaiskos P et al (2002) Thermoluminescent dosimetry of the selectseed 125I interstitial brachytherapy seed. Med Phys 29:709–716

    Article  PubMed  CAS  Google Scholar 

  • Ash D, Flynn A, Battermann J, Urological Brachytherapy Group; EORTC Radiotherapy Group et al (2000) ESTRO/EAU/EORTC recommendations on permanent seed implantation for localized prostate cancer. Radiother Oncol 57:315–321

    Article  PubMed  CAS  Google Scholar 

  • Battermann JJ, Boon TA, Moerland MA (2004) Results of permanent prostate brachytherapy, 13 years of experience at a single institution. Radiother Oncol 71:23–28

    Article  PubMed  Google Scholar 

  • Beyer DC, Brachman DG (2000) Failure free survival following brachytherapy alone for prostate cancer: comparison with external beam radiotherapy. Radiother Oncol 57:263–267

    Article  PubMed  CAS  Google Scholar 

  • Bice WS Jr, Dubois DF, Prete JJ et al (1999) Source localization from axial image sets by iterative relaxation of the nearest neighbor criterion. Med Phys 26:1919–1924

    Article  PubMed  Google Scholar 

  • Biggs PJ, Kelley DM (1983) Geometric reconstruction of seed implants using a three-film technique. Med Phys 10:701–704

    Article  PubMed  CAS  Google Scholar 

  • Blasko JC, Mate T, Sylvester JE et al (2002) Brachytherapy for carcinoma of the prostate: techniques, patient selection, and clinical outcomes. Semin Radiat Oncol 12:81–94

    Article  PubMed  Google Scholar 

  • Brinkmann DH, Kline RW (1998) Automated seed localization from CT datasets of the prostate. Med Phys 25:1667–1672

    Article  PubMed  CAS  Google Scholar 

  • Chen Z, Yue N, Wang X et al (2000) Dosimetric effects of edema in permanent prostate seed implants: a rigorous solution. Int J Radiat Oncol Biol Phys 47:1405–1419

    Article  PubMed  CAS  Google Scholar 

  • Chen ZJ, Deng J, Roberts K et al (2008) On the need to compensate for edema-induced dose reductions in preplanned (131)Cs prostate brachytherapy. Int J Radiat Oncol Biol Phys 70:303–310

    Article  PubMed  Google Scholar 

  • Crook J, Milosevic M, Catton P et al (2002) Interobserver variation in postimplant computed tomography contouring affects quality assessment of prostate brachytherapy. Brachytherapy 1:66–73

    Article  PubMed  Google Scholar 

  • Crook J, McLean M, Yeung I et al (2004) MRI-CT fusion to assess postbrachytherapy prostate volume and the effects of prolonged edema on dosimetry following transperineal interstitial permanent prostate brachytherapy. Brachytherapy 3:55–60

    Article  PubMed  Google Scholar 

  • Dale RG, Jones B, Coles IP (1994) Effect of tumour shrinkage on the biological effectiveness of permanent brachytherapy implants. Br J Radiol 67:639–645

    Article  PubMed  CAS  Google Scholar 

  • Dubois DF, Prestidge BR, Hotchkiss LA et al (1997) Source localization following permanent transperineal prostate interstitial brachytherapy using magnetic resonance imaging. Int J Radiat Oncol Biol Phys 39:1037–1041

    Article  PubMed  CAS  Google Scholar 

  • Dubois DF, Prestidge BR, Hotchkiss LA et al (1998) Intraobserver and interobserver variability of MR imaging- and CT-derived prostate volumes after transperineal interstitial permanent prostate brachytherapy. Radiology 207:785–789

    PubMed  CAS  Google Scholar 

  • Dubois DF, Bice WS Jr, Prestige BR (2001) CT and MRI derived source localization error in a custom prostate phantom using automated image coregistration. Med Phys 28:2280–2284

    Article  PubMed  CAS  Google Scholar 

  • Fagundes H, Keys RJ, Wojcik MF et al (2004) Transperineal TRUS-guided prostate brachytherapy using loose seeds versus rapid-strand: a dosimetric analysis. Brachytherapy 13:136–140

    Article  Google Scholar 

  • Fallavollita P, Aghaloo ZK, Burdette EC et al (2010) Registration between ultrasound and fluoroscopy or CT in prostate brachytherapy. Med Phys 37:2749–2760

    Article  PubMed  CAS  Google Scholar 

  • Hinnen KA, Battermann JJ, van Roermund JGH et al (2009) Long-term biochemical and survival outcome of 921 patients treated with I-125 permanent prostate brachytherapy. Int J Radiat Oncol Biol Phys 76:1433–1438

    Article  PubMed  Google Scholar 

  • Holm HH, Juul N, Pedersen JF et al (1983) Transperineal 125 iodine seed implantation in prostatic cancer guided by transrectal ultrasonography. J Urol 130:283–286

    PubMed  CAS  Google Scholar 

  • Holupka EJ, Meskell PM, Burdette EC et al (2004) An automatic seed finder for brachytherapy CT postplans based on the Hough transform. Med Phys 31:2672–2679

    Article  PubMed  CAS  Google Scholar 

  • Igidbashian L, Donath D, Carrier JF et al (2008) Poor predictive value of intraoperative real-time dosimetry for prostate seed brachytherapy. Int J Radiat Oncol Biol Phys 72:605–609

    Article  PubMed  Google Scholar 

  • Ishiyama H, Nakamura R, Satoh T et al (2008) Intersoftware variability in post-implanted CT analysis for interstitial permanent brachytherapy for prostate cancer: differences in automatically detected seed location. Radiother Oncol 89:214–216

    Article  PubMed  Google Scholar 

  • Kaplan ID, Meskell PM, Lieberfarb M et al (2004) A comparison of the precision of seeds deposited as loose seeds versus suture embedded seeds: a randomized trial. Brachytherapy 3:7–9

    Article  PubMed  Google Scholar 

  • Lagerburg V, Moerland MA, Lagendijk JJ et al (2005) Measurement of prostate rotation during insertion of needles for brachytherapy. Radiother Oncol 77:318–323

    Article  PubMed  Google Scholar 

  • Lessard E, Kwa SL, Pickett B et al (2006) Class solution for inversely planned permanent prostate implants to mimic an experienced dosimetrist. Med Phys 33:2773–2782

    Article  PubMed  Google Scholar 

  • Lin K, Lee SP, Cho JS et al (2007) Improvements in prostate brachytherapy dosimetry due to seed stranding. Brachytherapy 6:44–48

    Article  PubMed  Google Scholar 

  • Maletz KL, Ennis RD, Ostenson J et al (2012) Comparison of CT and MR-CT fusion for prostate post-implant dosimetry. Int J Radiat Oncol Biol Phys 82(5):1912–1917

    Article  PubMed  Google Scholar 

  • McLaughlin P, Narayana V, Pan C et al (2006) Comparison of day 0 and day 14 dosimetry for permanent prostate implants using stranded seeds. Int J Radiat Oncol Biol Phys 64:144–150

    Article  PubMed  Google Scholar 

  • McLaughlin PW, Evans C, Feng M et al (2010) Radiographic and anatomic basis for prostate contouring errors and methods to improve prostate contouring accuracy. Int J Radiat Oncol Biol Phys 76:369–378

    Article  PubMed  Google Scholar 

  • McNeely LK, Stone NN, Presser J et al (2004) Influence of prostate volume on dosimetry results in real-time 125I seed implantation. Int J Radiat Oncol Biol Phys 58:292–299

    Article  PubMed  Google Scholar 

  • Moerland MA (1998) The effect of edema on postimplant dosimetry of permanent iodine-125 prostate implants: a simulation study. J Brachytherapy Int 14:225–231

    Google Scholar 

  • Moerland MA, Wijrdeman HK, Beersma R et al (1997) Evaluation of permanent I-125 prostate implants using radiography and magnetic resonance imaging. Int J Radiat Oncol Biol Phys 37:927–933

    Article  PubMed  CAS  Google Scholar 

  • Moerland MA, van Deursen MJ, Elias SG et al (2009) Decline of dose coverage between intraoperative planning and post implant dosimetry for I-125 permanent prostate brachytherapy: comparison between loose and stranded seed implants. Radiother Oncol 91:202–206

    Article  PubMed  Google Scholar 

  • Nag S, Bice W, DeWyngaert K et al (2000) The American Brachytherapy Society recommendations for permanent prostate brachytherapy postimplant dosimetric analysis. Int J Radiat Oncol Biol Phys 46:221–230

    Article  PubMed  CAS  Google Scholar 

  • Nag S, Ciezki JP, Cormack R, Clinical Research Committee, American Brachytherapy Society et al (2001) Intraoperative planning and evaluation of permanent prostate brachytherapy: report of the American Brachytherapy Society. Int J Radiat Oncol Biol Phys 51:1422–1430

    Article  PubMed  CAS  Google Scholar 

  • Nag S, Shi P, Liu B et al (2008) Comparison of real-time intraoperative ultrasound-based dosimetry with postoperative computed tomography-based dosimetry for prostate brachytherapy. Int J Radiat Oncol Biol Phys 70:311–317

    Article  PubMed  Google Scholar 

  • Narayana V, Roberson PL, Pu AT et al (1997) Impact of differences in ultrasound and computed tomography volumes on treatment planning of permanent prostate implants. Int J Radiat Oncol Biol Phys 37:1181–1185

    Article  PubMed  CAS  Google Scholar 

  • Polo A, Cattani F, Vavassori A et al (2004) MR and CT image fusion for postimplant analysis in permanent prostate seed implants. Int J Radiat Oncol Biol Phys 60:1572–1579

    Article  PubMed  Google Scholar 

  • Potters L, Cao Y, Calugaru E et al (2001) A comprehensive review of CT-based dosimetry parameters and biochemical control in patients treated with permanent prostate brachytherapy. Int J Radiat Oncol Biol Phys 50:605–614

    Article  PubMed  CAS  Google Scholar 

  • Radford Evans DA, Meyer T, Angyalfi S et al (2007) Enhanced efficiency and ergonomics of an intraoperative automated prostate brachytherapy delivery technique. Brachytherapy 6:254–257

    Article  PubMed  Google Scholar 

  • Reed DR, Wallner KE, Merrick GS et al (2007) A prospective randomized comparison of stranded vs. loose 125I seeds for prostate brachytherapy. Brachytherapy 6:129–134

    Article  PubMed  Google Scholar 

  • Rivard MJ, Coursey BM, DeWerd LA et al (2004) Update of AAPM Task Group No. 43 Report: a revised AAPM protocol for brachytherapy dose calculations. Med Phys 31:633–674

    Article  PubMed  Google Scholar 

  • Rivard MJ, Evans DA, Kay I (2005) A technical evaluation of the Nucletron FIRST system: conformance of a remote afterloading brachytherapy seed implantation system to manufacturer specifications and AAPM Task Group report recommendations. J Appl Clin Med Phys 6:22–50

    Article  PubMed  Google Scholar 

  • Rivard MJ, Butler WM, DeWerd LA, American Association of Physicists in Medicine et al (2007) Supplement to the 2004 update of the AAPM Task Group No. 43 Report. Med Phys 34:2187–2205

    Article  PubMed  Google Scholar 

  • Roy JN, Wallner KE, Harrington PJ et al (1993) A CT-based evaluation method for permanent implants: application to prostate. Int J Radiat Oncol Biol Phys 26:163–169

    Article  PubMed  CAS  Google Scholar 

  • Salembier C, Lavagnini P, Nickers P, GEC ESTRO PROBATE Group et al (2007) Tumour and target volumes in permanent prostate brachytherapy: a supplement to the ESTRO/EAU/EORTC recommendations on prostate brachytherapy. Radiother Oncol 83:3–10

    Article  PubMed  Google Scholar 

  • Siddon RL, Chin LM (1985) Two-film brachytherapy reconstruction algorithm. Med Phys 12:77–83

    Article  PubMed  CAS  Google Scholar 

  • Siebert FA, De Brabandere M, Kirisits C et al (2007) Phantom investigations on CT seed imaging for interstitial brachytherapy. Radiother Oncol 85:316–323

    Article  PubMed  Google Scholar 

  • Sloboda RS, Usmani N, Pedersen J et al (2010) Time course of prostatic edema post permanent seed implant determined by magnetic resonance imaging. Brachytherapy 9:354–361

    Article  PubMed  Google Scholar 

  • Steggerda MJ, Moonen LM, van der Poel HG et al (2007) The influence of geometrical changes on the dose distribution after I-125 seed implantation of the prostate. Radiother Oncol 83:11–17

    Article  PubMed  Google Scholar 

  • Stock RG, Stone NN, Tabert A et al (1998) A dose–response study for I-125 prostate implants. Int J Radiat Oncol Biol Phys 41:101–108

    Article  PubMed  CAS  Google Scholar 

  • Stone NN, Hong S, Lo YC et al (2003) Comparison of intraoperative dosimetric implant representation with postimplant dosimetry in patients receiving prostate brachytherapy. Brachytherapy 2:17–25

    Article  PubMed  Google Scholar 

  • Tanaka O, Hayashi S, Matsuo M et al (2007) Effect of edema on postimplant dosimetry in prostate brachytherapy using CT/MRI fusion. Int J Radiat Oncol Biol Phys 69:614–618

    Article  PubMed  Google Scholar 

  • Taschereau R, Pouliot J, Roy J et al (2000) Seed misplacement and stabilizing needles in transperineal permanent prostate implants. Radiother Oncol 55:59–63

    Article  PubMed  CAS  Google Scholar 

  • Van Gellekom MP, Moerland MA, Kal HB et al (2002) Biologically effective dose for permanent prostate brachytherapy taking into account post implant edema. Int J Radiat Oncol Biol Phys 53:422–433

    Article  PubMed  Google Scholar 

  • Van Gellekom MP, Moerland MA, Wijrdeman HK et al (2004) Quality of permanent prostate implants using automated delivery with seedSelectron versus manual insertion of RAPID Strands. Radiother Oncol 73:49–56

    Article  PubMed  Google Scholar 

  • Vicini FA, Kini VR, Edmundson G et al (1999) A comprehensive review of prostate cancer brachytherapy: defining an optimal technique. Int J Radiat Oncol Biol Phys 44:483–491

    Article  PubMed  CAS  Google Scholar 

  • Villeirs GM, L Verstraete K, De Neve WJ et al (2005) Magnetic resonance imaging anatomy of the prostate and periprostatic area: a guide for radiotherapists. Radiother Oncol 76:99–106

    Article  PubMed  Google Scholar 

  • Wang JZ, Mayr NA, Nag S et al (2006) Effect of edema, relative biological effectiveness, and dose heterogeneity on prostate brachytherapy. Med Phys 33:1025–1032

    Article  PubMed  Google Scholar 

  • Waterman FM, Yue N, Corn BW et al (1998) Edema associated with I-125 or Pd-103 prostate brachytherapy and its impact on post-implant dosimetry: an analysis based on serial CT acquisition. Int J Radiat Oncol Biol Phys 41:1069–1077

    Article  PubMed  CAS  Google Scholar 

  • Wei Z, Ding M, Downey D et al (2005) Dynamic intraoperative prostate brachytherapy using 3D TRUS guidance with robot assistance. Conf Proc IEEE Eng Med Biol Soc 7:7429–7432

    PubMed  Google Scholar 

  • Westendorp H, Hoekstra CJ, van’t Riet A et al (2007) Intraoperative adaptive brachytherapy of iodine-125 prostate implants guided by C-arm cone-beam computed tomography-based dosimetry. Brachytherapy 6:231–237

    Article  PubMed  Google Scholar 

  • Willins J, Wallner K (1997) CT-based dosimetry for transperineal I-125 prostate brachytherapy. Int J Radiat Oncol Biol Phys 39:347–353

    Article  PubMed  CAS  Google Scholar 

  • Willins J, Wallner K (1998) Time-dependent changes in CT-based dosimetry of I-125 prostate brachytherapy. Radiat Oncol Investig 6:157–160

    Article  PubMed  CAS  Google Scholar 

  • Yue N, Dicker AP, Corn BW et al (1999a) A dynamic model for the estimation of optimum timing of computed tomography scan for dose evaluation of 125I or 103Pd seed implant of prostate. Int J Radiat Oncol Biol Phys 43:447–454

    Article  PubMed  CAS  Google Scholar 

  • Yue N, Chen Z, Peschel R et al (1999b) Optimum timing for imagebased dose evaluation of I-125 and Pd-103 prostate seed implants. Int J Radiat Oncol Biol Phys 45:1063–1072

    Article  PubMed  CAS  Google Scholar 

  • Yue N, Chen Z, Nath R (2002) Edema-induced increase in tumour cell survival for 125I and 103Pd prostate permanent seed implants – a bio-mathematical model. Phys Med Biol 47:1185–1204

    Article  PubMed  Google Scholar 

  • Zelefsky MJ, Yamada Y, Cohen GN et al (2007) Intraoperative real-time planned conformal prostate brachytherapy: post implantation dosimetric outcome and clinical implications. Radiother Oncol 84:185–189

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marinus Adriaan Moerland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Moerland, M.A. (2013). Postimplant Dosimetry. In: Kovács, G., Hoskin, P. (eds) Interstitial Prostate Brachytherapy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36499-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36499-0_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36498-3

  • Online ISBN: 978-3-642-36499-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics