Skip to main content

The Role of Hormones in Controlling Vascular Differentiation

  • Chapter
  • First Online:

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 20))

Abstract

The vascular system in plants is induced and controlled by streams of inductive hormonal signals. Auxin produced in young leaves is the primary controlling hormone in vascular differentiation. Its downward transport pathways, major controlling mechanisms, and sensitivity of cells to auxin are clarified. Cytokinin, from the root cap moves upward, increases the sensitivity to auxin and stimulates cambial cell divisions. Gibberellin produced in mature leaves moves non-polarly and promotes elongation, regulates cambium activity, and induces long fibers and long tracheids. Transgenic plants with elevated bioactive gibberellin concentrations grow rapidly and yield numerous longer fibers and longer tracheids. Centrifugal movement of ethylene from maturing vessels induces the radial vascular rays. In conifer trees, jasmonate, which promotes defense response, is mediated by ethylene and induces traumatic resin ducts. In addition the role of the hormonal signals in regulating gradients of cell size and density, in controlling the type of differentiating vascular element and how they have shaped wood evolution are elucidated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agusti J, Herold S, Schwarz M, Sanchez P, Ljung K, Dun EA, Brewer PB, Beveridge CA, Sieberer T, Sehr EM, Greb T (2011) Strigolactone signaling is required for auxin-dependent stimulation of secondary growth in plants. Proc Natl Acad Sci USA 108:20242–20247

    Article  PubMed  CAS  Google Scholar 

  • Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827

    Article  PubMed  CAS  Google Scholar 

  • Aloni R (1979) Role of auxin and gibberellin in differentiation of primary phloem fibers. Plant Physiol 63:609–614

    Article  PubMed  CAS  Google Scholar 

  • Aloni R (1980) Role of auxin and sucrose in the differentiation of sieve and tracheary elements in plant tissue cultures. Planta 150:255–263

    Article  CAS  Google Scholar 

  • Aloni R (1982) Role of cytokinin in differentiation of secondary xylem fibers. Plant Physiol 70:1631–1633

    Article  PubMed  CAS  Google Scholar 

  • Aloni R (1985) Plant growth method and composition. US Patent No 4507144

    Google Scholar 

  • Aloni R (1987) Differentiation of vascular tissues. Annu Rev Plant Physiol 38:179–204

    Article  Google Scholar 

  • Aloni R (1991) Wood formation in deciduous hardwood trees. In: Raghavendra AS (ed) Physiology of trees. Wiley, New York, pp 175–197

    Google Scholar 

  • Aloni R (1995) The induction of vascular tissues by auxin and cytokinin. In: Davies PJ (ed) Plant hormones: physiology, biochemistry and molecular biology. Kluwer, Dordrecht, pp 531–546

    Google Scholar 

  • Aloni R (2001) Foliar and axial aspects of vascular differentiation – hypotheses and evidence. J Plant Growth Regul 20:22–34

    Article  CAS  Google Scholar 

  • Aloni R (2010) The induction of vascular tissues by auxin. In: Davies PJ (ed) Plant hormones: biosynthesis, signal transduction, action! Kluwer, Dordrecht, pp 485–506

    Google Scholar 

  • Aloni R, Barnett JR (1996) The development of phloem anastomoses between vascular bundles and their role in xylem regeneration after wounding in Cucurbita and Dahlia. Planta 198:595–603

    Article  CAS  Google Scholar 

  • Aloni R, Peterson CA (1990) The functional significance of phloem anastomoses in stems of Dahlia pinnata Cav. Planta 182:583–590

    Article  Google Scholar 

  • Aloni R, Peterson CA (1997) Auxin promotes dormancy callose removal from the phloem of Magnolia kobus and callose accumulation and earlywood vessel differentiation in Quercus robur. J Plant Res 110:37–44

    Article  CAS  Google Scholar 

  • Aloni R, Sachs T (1973) The three-dimensional structure of primary phloem systems. Planta 113:343–353

    Article  Google Scholar 

  • Aloni R, Ullrich CI (2007) Biology of crown gall tumors. In: Tzfira T, Citovsky V (eds) Agrobacterium. Springer, Berlin, pp 525–549

    Google Scholar 

  • Aloni R, Zimmermann MH (1983) The control of vessel size and density along the plant axis – a new hypothesis. Differentiation 24:203–208

    Article  Google Scholar 

  • Aloni R, Baum SF, Peterson CA (1990a) The role of cytokinin in sieve tube regeneration and callose production in wounded Coleus internodes. Plant Physiol 93:982–989

    Article  PubMed  CAS  Google Scholar 

  • Aloni R, Tollier T, Monties B (1990b) The role of auxin and gibberellin in controlling lignin formation in primary phloem fibers and in xylem of Coleus blumei stems. Plant Physiol 94:1743–1747

    Article  PubMed  CAS  Google Scholar 

  • Aloni R, Raviv A, Peterson CA (1991) The role of auxin in the removal of dormancy callose and resumption of phloem activity in Vitis vinifera. Can J Bot 69:1825–1832

    Article  CAS  Google Scholar 

  • Aloni R, Pradel KS, Ullrich CI (1995) The three-dimensional structure of vascular tissues in Agrobacterium tumefaciens-induced crown galls and in the host stem of Ricinus communis L. Planta 196:597–605

    Article  CAS  Google Scholar 

  • Aloni R, Alexander JD, Tyree MT (1997) Natural and experimentally altered hydraulic architecture of branch junctions in Acer saccharum Marsh. and Quercus velutina Lam. trees. Trees 11:255–264

    Google Scholar 

  • Aloni R, Wolf A, Feigenbaum P, Avni A, Klee HJ (1998) The Never ripe mutant provides evidence that tumor-induced ethylene controls the morphogenesis of Agrobacterium tumefaciens-induced crown galls on tomato stems. Plant Physiol 117:841–847

    Article  PubMed  CAS  Google Scholar 

  • Aloni R, Feigenbaum P, Kalev N, Rozovsky S (2000) Hormonal control of vascular differentiation in plants: the physiological basis of cambium ontogeny and xylem evolution. In: Savidge RA, Barnett JR, Napier R (eds) Cell and molecular biology of wood formation. BIOS Scientific Publishers, Oxford, pp 223–236

    Google Scholar 

  • Aloni R, Schwalm K, Langhans M, Ullrich CI (2003) Gradual shifts in sites of free-auxin production during leaf-primordium development and their role in vascular differentiation and leaf morphogenesis in Arabidopsis. Planta 216:841–853

    PubMed  CAS  Google Scholar 

  • Aloni R, Langhans M, Aloni E, Ullrich CI (2004) Role of cytokinin in the regulation of root gravitropism. Planta 220:177–182

    Article  PubMed  CAS  Google Scholar 

  • Aloni R, Langhans M, Aloni E, Dreieicher E, Ullrich CI (2005) Root-synthesized cytokinin in Arabidopsis is distributed in the shoot by the transpiration stream. J Exp Bot 56:1535–1544

    Article  PubMed  CAS  Google Scholar 

  • Aloni R, Aloni E, Langhans M, Ullrich CI (2006a) Role of cytokinin and auxin in shaping root architecture: regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism. Ann Bot 97:883–893

    Article  PubMed  CAS  Google Scholar 

  • Aloni R, Aloni E, Langhans M, Ullrich CI (2006b) Role of auxin in regulating Arabidopsis flower development. Planta 223:315–328

    Article  PubMed  CAS  Google Scholar 

  • Anfodillo T, Deslauriers A, Menardi R, Tedoldi L, Petit G, Rossi S (2012) Widening of xylem conduits in a conifer tree depends on the longer time of cell expansion downwards along the stem. J Exp Bot 63:837–845

    Article  PubMed  CAS  Google Scholar 

  • Bailey IW (1944) The development of vessels in angiosperms in morphological research. Am J Bot 31:421–428

    Article  Google Scholar 

  • Bannan MW (1958) An occurrence of perforated tracheids in Thuja occidentalis L. New Phytol 57:132–134

    Article  Google Scholar 

  • Barbez E, Kubeš M, Rolčík J, Béziat C, Pěnčík A, Wang B, Rosquete MR, Zhu J, Dobrev PI, Lee Y, Zažímalovà E, Petrášek J, Geisler M, Friml J, Kleine-Vehn J (2012) A novel putative auxin carrier family regulates intracellular auxin homeostasis in plants. Nature 485:119–122

    Article  PubMed  CAS  Google Scholar 

  • Barker-Bridgers M, Ribnicky DM, Cohen JD, Jones AM (1998) Red-light regulated growth. II. Changes in the abundance of indoleacetic acid in the maize mesocotyl. Planta 204:207–211

    Article  CAS  Google Scholar 

  • Baucher M, El Jaziri M, Vandeputte O (2007) From primary to secondary growth: origin and development of the vascular system. J Exp Bot 58:3485–3501

    Article  PubMed  CAS  Google Scholar 

  • Baum SF, Aloni R, Peterson CA (1991) The role of cytokinin in vessel regeneration in wounded Coleus internodes. Ann Bot 67:543–548

    CAS  Google Scholar 

  • Benková E, Michniewicz M, Sauer M, Teichmann T, Seifertova D, Jürgens G, Friml J (2003) Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115:591–602

    Article  PubMed  Google Scholar 

  • Berleth T, Mattsson J, Hardtke CS (2000) Vascular continuity and auxin signals. Trends Plant Sci 5:387–393

    Article  PubMed  CAS  Google Scholar 

  • Biemelt S, Tschiersch H, Sonnewald U (2004) Impact of altered gibberellin metabolism on biomass accumulation, lignin biosynthesis, and photosynthesis in transgenic tobacco plants. Plant Physiol 135:254–265

    Article  PubMed  CAS  Google Scholar 

  • Bishopp A, Help H, El-Showk S, Weijers D, Scheres B, Friml J, Benková E, Mähönen AP, Helariutta Y (2011a) A mutually inhibitory interaction between auxin and cytokinin specifies vascular pattern in roots. Curr Biol 21:917–926

    Article  PubMed  CAS  Google Scholar 

  • Bishopp A, Lehesranta S, Vatén A, Help H, El-Showk S, Scheres B, Helariutta K, Mähönen AP, Sakakibara H, Helariutta Y (2011b) Phloem-transported cytokinin regulates polar auxin transport and maintains vascular pattern in the root meristem. Curr Biol 21:927–932

    Article  PubMed  CAS  Google Scholar 

  • Bollhöner B, Prestele J, Tuominen H (2012) Xylem cell death: emerging understanding of regulation and function. J Exp Bot 63:1081–1094

    Article  PubMed  CAS  Google Scholar 

  • Booker J, Chatfield S, Leyser O (2003) Auxin acts in xylem-associated or medullary cells to mediate apical dominance. Plant Cell 15:495–507

    Article  PubMed  CAS  Google Scholar 

  • Bradford KJ, Trewavas AJ (1994) Sensitivity thresholds and variable time scales in plant hormone action. Plant Physiol 105:1029–1036

    PubMed  CAS  Google Scholar 

  • Caño-Delgado A, Lee JY, Demura T (2010) Regulatory mechanisms for specification and patterning of plant vascular tissues. Annu Rev Cell Dev Biol 26:605–637

    Article  PubMed  CAS  Google Scholar 

  • Carlsbecker A, Helariutta Y (2005) Phloem and xylem specifications: pieces of the puzzle emerge. Curr Opin Plant Biol 8:512–517

    Article  PubMed  CAS  Google Scholar 

  • Chaffey N, Cholewa E, Regan S, Sundberg B (2002) Secondary xylem development in Arabidopsis: a model for wood formation. Physiol Plant 114:594–600

    Article  PubMed  CAS  Google Scholar 

  • Clouse SD (2011) Brassinosteroids. In: The Arabidopsis book, vol 9. American Society of Plant Biologists, Rockville, MD. doi:10.1199/tab.0073, http://www.aspb.org/publications/arabidopsis/

  • Coenen C, Lomax TL (1997) Auxin-cytokinin interactions in higher plants: old problems and new tools. Trends Plant Sci 2:351–356

    Article  PubMed  CAS  Google Scholar 

  • Cook CE, Whichard LP, Wall ME (1972) Germination stimulants. II. The structure of strigol – a potent seed germination stimulant for witchweed (Striga lutea Lour.). J Am Chem Soc 94:6198–6199

    Article  CAS  Google Scholar 

  • Dayan J, Schwarzkopf M, Avni A, Aloni R (2010) Enhancing plant growth and fiber production by silencing GA 2-oxidase. Plant Biotechnol J 8:425–435

    Article  PubMed  CAS  Google Scholar 

  • Dayan J, Voronin N, Gong F, Sun TP, Hedden P, Fromm H, Aloni R (2012) Leaf-induced gibberellin signaling is essential for internode elongation, cambial activity, and fiber differentiation in tobacco stems. Plant Cell 24:66–79

    Article  PubMed  CAS  Google Scholar 

  • Demura T, Fukuda H (2007) Transcriptional regulation in wood formation. Trends Plant Sci 12:64–70

    Article  PubMed  CAS  Google Scholar 

  • Deslauriers A, Giovannelli A, Rossi S, Castro G, Fragnelli G, Traversi L (2009) Intra-annual cambial activity and carbon availability in stem of poplar. Tree Physiol 29:1223–1235

    Article  PubMed  CAS  Google Scholar 

  • Dettmer J, Elo A, Helariutta Y (2009) Hormone interactions during vascular development. Plant Mol Biol 69:347–360

    Article  PubMed  CAS  Google Scholar 

  • Dodd IC (2003) Hormonal interactions and stomatal responses. J Plant Growth Regul 22:32–46

    Article  CAS  Google Scholar 

  • Domagalska MA, Leyser O (2011) Signal integration in the control of shoot branching. Nat Rev Mol Cell Biol 12:211–221

    Article  PubMed  CAS  Google Scholar 

  • Eklöf S, Åstot C, Blackwell J, Moritz T, Olsson O, Sandberg G (1997) Auxin-cytokinin interactions in wild-type and transgenic tobacco. Plant Cell Physiol 38:225–235

    Article  Google Scholar 

  • Erbilgin N, Gillette NE, Mori SR, Stein JD, Owen DR, Wood DL (2007) Acetophenone as an antiattractant for the western pine beetle, Dendroctonus brevicomis LeConte (Coleoptera: Scolytidae). J Chem Ecol 33:817–823

    Article  PubMed  CAS  Google Scholar 

  • Eriksson ME, Moritz T (2002) Daylength and special expression of gibberellin 20-oxidase isolated from hybrid aspen (Populus termulata × P. tremuloides Michx.). Planta 214:920–930

    Article  PubMed  CAS  Google Scholar 

  • Eriksson ME, Israelsson M, Olsson O, Moritz T (2000) Increased gibberellin biosynthesis in transgenic trees promotes growth, biomass production and xylem fiber length. Nat Biotechnol 18:784–788

    Article  PubMed  CAS  Google Scholar 

  • Evert RF (2006) Esau’s plant anatomy, meristems, cells, and tissues of the plant body – their structure, function, and development. Wiley, Hoboken, NJ

    Book  Google Scholar 

  • Fahn A (1964) Some anatomical adaptations of desert plants. Phytomorphology 14:93–102

    Google Scholar 

  • Fahn A (1990) Plant anatomy, 4th edn. Pergamon Press, Oxford

    Google Scholar 

  • Fahn A, Leshem B (1963) Wood fibres with living protoplasts. New Phytol 62:91–98

    Article  Google Scholar 

  • Fahn A, Zamski E (1970) The influence of pressure, wind, wounding and growth substances on the rate of resin duct formation in Pinus halepensis wood. Isr J Bot 19:429–446

    CAS  Google Scholar 

  • Fonti P, Solomonoff N, García-González I (2007) Earlywood vessels of Castanea sativa record temperature before their formation. New Phytol 173:562–570

    Article  PubMed  Google Scholar 

  • Friml J (2010) Subcellular trafficking of PIN auxin efflux carriers in auxin transport. Eur J Cell Biol 89:231–235

    Article  PubMed  CAS  Google Scholar 

  • Friml J, Palme K (2002) Polar auxin transport – old questions and new concepts? Plant Mol Biol 49:273–284

    Article  PubMed  CAS  Google Scholar 

  • Frydman VM, Wareing PF (1973) Phase change in Hedera helix L. II. The possible role of roots as a source of shoot gibberellin-like substances. J Exp Bot 24:1139–1148

    Article  CAS  Google Scholar 

  • Frydman VM, Wareing PF (1974) Phase change in Hedera helix L. III. The effects of gibberellins, abscisic acid and growth retardants on juvenile and adult ivy. J Exp Bot 25:420–429

    Article  CAS  Google Scholar 

  • Fu PL, Jiang YJ, Wang AY, Brodribb TJ, Zhang JL, Zhu SD, Cao KF (2012) Stem hydraulic traits and leaf water-stress tolerance are co-ordinated with the leaf phenology of angiosperm trees in an Asian tropical dry karst forest. Ann Bot 110(1):189–199

    Article  PubMed  Google Scholar 

  • Fukuda H (1997) Tracheary element differentiation. Plant Cell 9:1147–1156

    Article  PubMed  CAS  Google Scholar 

  • Fukuda H (2004) Signals that control vascular cell differentiation. Nat Rev Mol Cell Biol 5:379–391

    Article  PubMed  CAS  Google Scholar 

  • Galiba G, Vagujfalvi A, Li CX, Soltesz A, Dubcovsky J (2009) Regulatory genes involved in the determination of frost tolerance in temperate cereals. Plant Sci 176:12–19

    Article  CAS  Google Scholar 

  • Gälweiler L, Guan C, Müller A, Wisman E, Mendgen K, Yephremov A, Palme K (1998) Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science 282:2226–2230

    Article  PubMed  Google Scholar 

  • Geldner N, Anders N, Wolters H, Keicher J, Kornberger W, Muller P, Delbarre A, Ueda T, Nakano A, Jürgens G (2003) The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Cell 112:219–230

    Article  PubMed  CAS  Google Scholar 

  • Gerrienne P, Gensel PG, Strullu-Derrien C, Lardeux H, Steemans P, Prestianni C (2011) A simple type of wood in two early Devonian plants. Science 333:837

    Article  PubMed  CAS  Google Scholar 

  • Gessler A, Kopriva S, Rennenberg H (2004) Regulation of nitrate uptake at the whole-tree level: interaction between nitrogen compounds, cytokinins and carbon metabolism. Tree Physiol 24:1313–1321

    PubMed  CAS  Google Scholar 

  • Goldschmidt EE, Samach A (2004) Aspects of flowering in fruit trees. In: Kang SM et al (eds) Proceedings of ths 9th IS on plant bioregulators. Acta Horticulture 653, pp 23–27

    Google Scholar 

  • Goldsmith MHM, Catealdo DA, Karn J, Brenneman T, Trip P (1974) The nonpolar transport of auxin in the phloem of intact Coleus plants. Planta 116:301–317

    Article  CAS  Google Scholar 

  • Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pagès V, Dun EA, Pillot JP, Letisse F, Matusova R, Danoun S, Portais JC, Bouwmeester H, Bécard G, Beveridge CA, Rameau C, Rochange SF (2008) Strigolactone inhibition of shoot branching. Nature 455:189–194

    Article  PubMed  CAS  Google Scholar 

  • Gordon D, Karbat I, Ilan N, Cohen L, Kahn R, Gilles N, Dong K, Stuhmer W, Tytgat J, Gurevitz M (2007) The differential preference of scorpion alpha-toxins for insect or mammalian sodium channels: implications for improved insect control. Toxicon 49:452–472

    Article  PubMed  CAS  Google Scholar 

  • Grace LJ, Charity JA, Gresham B, Kay N, Walter C (2005) Insect-resistant transgenic Pinus radiata. Plant Cell Rep 24:103–111

    Article  PubMed  CAS  Google Scholar 

  • Groover AT (2005) What genes make a tree? Trends Plant Sci 10:210–214

    Article  PubMed  CAS  Google Scholar 

  • Groover A, Robischon M (2006) Developmental mechanisms regulating secondary growth in woody plants. Curr Opin Plant Biol 9:55–58

    Article  PubMed  CAS  Google Scholar 

  • Gurevitz M, Karbat I, Cohen L, Ilan N, Kahn R, Turkov M, Stankiewicz M, Stuhmer W, Dong K, Gordon D (2007) The insecticidal potential of scorpion beta-toxins. Toxicon 49:473–489

    Article  PubMed  CAS  Google Scholar 

  • Hacke UG, Sperry JS, Wheeler JK, Castro L (2006) Scaling of angiosperm xylem structure with safety and efficiency. Tree Physiol 26:689–701

    Article  PubMed  Google Scholar 

  • Hagen G, Martin G, Li Y, Guilfoyle TJ (1991) Auxin-induced expression of the soybean GH3 promoter in transgenic tobacco plants. Plant Mol Biol 17:567–579

    Article  PubMed  CAS  Google Scholar 

  • Hargreaves CL, Grace LJ, van der Maas SA, Menzies MI, Kumar S, Holden DG, Foggo MN, Low CB, Dibley MJ (2005) Comparative in vitro and early nursery performance of adventitious and axillary shoots from epicotyls of same zygotic embryo of control-pollinated Pinus radiata. Can J For Res 35:2629–2641

    Article  Google Scholar 

  • Hellgren JM, Olofsson K, Sundberg B (2004) Patterns of auxin distribution during gravitational induction of reaction wood in poplar and pine. Plant Physiol 135:212–220

    Article  PubMed  CAS  Google Scholar 

  • Hess T, Sachs T (1972) The influence of a mature leaf on xylem differentiation. New Phytol 71:903–914

    Article  Google Scholar 

  • Hirota A, Kato T, Fukaki H, Aida M, Tasaka M (2007) The auxin-regulated AP2/EREBP gene PUCHI is required for morphogenesis in the early lateral root primordium of Arabidopsis. Plant Cell 19:2156–2168

    Article  PubMed  CAS  Google Scholar 

  • Horner HT, Lersten NR, Wirth CL (1994) Quantitative survey of sieve tube distribution in foliar terminal veins of ten dicot species. Am J Bot 81:1267–1274

    Article  Google Scholar 

  • Hou H-W, Zhou Y-T, Mwange K-N, Li W-F, He X-Q, Cui K-M (2006) ABP1 expression regulated by IAA and ABA is associated with the cambium periodicity in Eucommia ulmoides Oliv. J Exp Bot 57:3857–3867

    Article  PubMed  CAS  Google Scholar 

  • Howe GA (2004) Jasmonates. In: Davies PJ (ed) Plant hormones: biosynthesis, signal transduction, action! Kluwer, Dordrecht, pp 610–634

    Google Scholar 

  • Huber DP, Philippe RN, Madilao LL, Sturrock RN, Bohlmann J (2005) Changes in anatomy and terpene chemistry in roots of Douglas-fir seedlings following treatment with methyl jasmonate. Tree Physiol 25:1075–1083

    Article  PubMed  CAS  Google Scholar 

  • Hudgins JW, Franceschi VR (2004) Methyl jasmonate-induced ethylene production is responsible for conifer phloem defense responses and reprogramming of stem cambial zone for traumatic resin duct formation. Plant Physiol 135:2134–2149

    Article  PubMed  CAS  Google Scholar 

  • Hudgins JW, Christiansen E, Franceschi VR (2003) Methyl jasmonate induces changes mimicking anatomical defenses in diverse members of the Pinaceae. Tree Physiol 23:361–371

    Article  PubMed  CAS  Google Scholar 

  • Hudgins JW, Ralph SG, Franceschi VR, Bohlmann J (2006) Ethylene in induced conifer defense: cDNA cloning, protein expression, and cellular and subcellular localization of 1-aminocyclopropane-1-carboxylate oxidase in resin duct and phenolic parenchyma cells. Planta 224:865–877

    Article  PubMed  CAS  Google Scholar 

  • Israelsson M, Sundberg B, Moritz T (2005) Tissue-specific localization of gibberellins and expression of gibberellin-biosynthetic and signaling genes in wood-forming tissues in aspen. Plant J 44:494–504

    Article  PubMed  CAS  Google Scholar 

  • Iwasaki T, Shibaoka H (1991) Brassinosteroids act as regulators of tracheary-element differentiation in isolated Zinnia mesophyll cells. Plant Cell Physiol 32:1007–1014

    CAS  Google Scholar 

  • Jacobs WP (1952) The role of auxin in differentiation of xylem around a wound. Am J Bot 39:301–309

    Article  CAS  Google Scholar 

  • Jiang S, Xu K, Wang YZ, Ren YP, Gu S (2008) Role of GA3, GA4 and uniconazole-P in controlling gravitropism and tension wood formation in Fraxinus mandshurica Rupr. var. japonica Maxim. seedlings. J Integr Plant Biol 50:19–28

    Article  PubMed  CAS  Google Scholar 

  • Jung JH, Park CM (2007) Vascular development in plants: specification of xylem and phloem tissues. J Plant Biol 50:301–305

    Article  CAS  Google Scholar 

  • Kalev N, Aloni R (1998) Role of auxin and gibberellin in regenerative differentiation of tracheids in Pinus pinea L. seedlings. New Phytol 138:461–468

    Article  CAS  Google Scholar 

  • Keeling CI, Bohlmann J (2006) Genes, enzymes and chemicals of terpenoid diversity in the constitutive and induced defence of conifers against insects and pathogens. New Phytol 170:657–675

    Article  PubMed  CAS  Google Scholar 

  • Klee H (2008) Evidence points to the existence of a hitherto uncharacterized type of hormone that controls different aspects of plant growth and interaction. The hunt for that hormone is heating up. Nature 455:176–177

    Article  PubMed  CAS  Google Scholar 

  • Klee HJ, Horsch RB, Hinchee MA, Hein MB, Hoffmann MB (1987) The effects of overproduction of two Agrobacterium tumefaciens T-DNA auxin biosynthetic gene products in transgenic petunia plants. Genes Dev 1:86–96

    Article  CAS  Google Scholar 

  • Kleine-Vehn J, Wabnik K, Martinière A, Łangowski Ł, Willig K, Naramoto S, Leitner J, Tanaka H, Jakobs S, Robert S, Luschnig C, Govaerts W, Hell SW, Runions J, Friml J (2011) Recycling, clustering, and endocytosis jointly maintain PIN auxin carrier polarity at the plasma membrane. Mol Syst Biol 7:540

    Article  PubMed  CAS  Google Scholar 

  • Kohlen W, Charnikhova T, Liu Q, Bours R, Domagalska MA, Beguerie S, Verstappen F, Leyser O, Bouwmeester H, Ruyter-Spira C (2011) Strigolactones are transported through the xylem and play a key role in shoot architectural response to phosphate deficiency in nonarbuscular mycorrhizal host Arabidopsis. Plant Physiol 155:974–987

    Article  PubMed  CAS  Google Scholar 

  • Koiwai H, Nakaminami K, Seo M, Mitsuhashi W, Toyomasu T, Koshiba T (2004) Tissue-specific localization of an abscisic acid biosynthetic enzyme, AAO3, in Arabidopsis. Plant Physiol 134:1697–1707

    Article  PubMed  CAS  Google Scholar 

  • Kramer EM (2006) Wood grain pattern formation: a brief review. J Plant Growth Regul 25:290–301

    Article  CAS  Google Scholar 

  • Kramer EM, Borkowski MH (2004) Wood grain patterns at branch junctions: modeling and implications. Trees 18:493–500

    Article  Google Scholar 

  • Kudo T, Kiba T, Sakakibara H (2010) Metabolism and long-distance translocation of cytokinins. J Integr Plant Biol 52:53–60

    Article  PubMed  CAS  Google Scholar 

  • Kuroha T, Satoh S (2007) Involvement of cytokinins in adventitious and lateral root formation. Plant Root 1:27–33

    Article  CAS  Google Scholar 

  • Larkin PJ, Gibson JM, Mathesius U, Weinmann JJ, Gärtner E, Hall E, Tanner GJ, Rolfe BG, Djordjevic MA (1996) Transgenic white clover. Studies with the auxin-responsive promoter, GH3, in root gravitropism and lateral root development. Transgenic Res 5:325–335

    Article  PubMed  CAS  Google Scholar 

  • Larson PR (1969) Wood formation and the concept of wood quality. Yale University School of Forestry Bulletin 74, New Haven

    Google Scholar 

  • Larson PR (1994) The vascular cambium: development and structure. Springer, Berlin

    Book  Google Scholar 

  • Lechowicz MJ (1984) Why do temperate deciduous trees leaf out at different times? Adaptation and ecology of forest communities. Am Nat 124:821–842

    Article  Google Scholar 

  • Leitch MA (2001) Vessel-element dimensions and frequency within the most current growth increment along the length of Eucalyptus globules stems. Trees 15:353–357

    Article  Google Scholar 

  • Lersten NR (1990) Sieve tubes in foliar vein endings: review and quantitative survey of Rudbeckia laciniata (Asteraceae). Am J Bot 77:1132–1141

    Article  Google Scholar 

  • Lersten NR, Curtis JD (1993) Paraveinal mesophyll in Calliandra tweedii and C. emarginata (Leguminosa; Mimosoideae). Am J Bot 80:561–568

    Article  Google Scholar 

  • Lev-Yadun S, Aloni R (1990) Vascular differentiation in branch junctions of trees: circular patterns and functional significance. Trees 4:49–54

    Article  Google Scholar 

  • Lev-Yadun S, Aloni R (1995) Differentiation of the ray system in woody plants. Bot Rev 61:45–84

    Article  Google Scholar 

  • Li S, Pezeshki SR, Shields FD (2006) Partial flooding enhances aeration in adventitious roots of black willow (Salix nigra) cuttings. J Plant Physiol 163:619–628

    Article  PubMed  CAS  Google Scholar 

  • Liphschitz N (1995) Ecological wood anatomy: changes in xylem structure in Israeli trees. In: Shuming W (ed) Wood anatomy research 1995. Proceedings of the international symposium on tree anatomy and wood formation, Tianjin, China. International Academic Publishers, Beijing, pp 12–15

    Google Scholar 

  • Ljung K, Hull AK, Kowalczyk M, Marchant A, Celenza J, Cohen JD, Sandberg G (2002) Biosynthesis, conjugation, catabolism and homeostasis of indol-3-acetic acid in Arabidopsis. Plant Mol Biol 50:309–332

    Article  Google Scholar 

  • López-Ráez JA, Charnikhova T, Gómez-Roldán V, Matusova R, Kohlen W, De Vos R, Verstappen F, Puech-Pages V, Bécard G, Mulder P, Bouwmeester H (2008) Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation. New Phytol 178:863–874

    Article  PubMed  CAS  Google Scholar 

  • Love J, Bjorklund S, Vahala J, Hertzberg M, Kangasjarvi J, Sundberg B (2009) Ethylene is an endogenous stimulator of cell division in the cambial meristem of Populus. Proc Natl Acad Sci USA 106:5984–5989

    Article  PubMed  CAS  Google Scholar 

  • Ludwig-Müller J (2011) Auxin conjugates: their role for plant development and in the evolution of land plants. J Exp Bot 62:1757–1773

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto-Kitano M, Kusumoto T, Tarkowski P, Kinoshita-Tsujimura K, Václavíková K, Miyawaki K, Kakimoto T (2008) Cytokinins are central regulators of cambial activity. Proc Natl Acad Sci USA 105:20027–20031

    Article  PubMed  CAS  Google Scholar 

  • Matte Risopatron JP, Sun Y, Jones BJ (2010) The vascular cambium: molecular control of cellular structure. Protoplasma 247:145–161

    Article  PubMed  Google Scholar 

  • Mattsson J, Sung ZR, Berleth T (1999) Responses of plant vascular systems to auxin transport inhibition. Development 126:2979–2991

    PubMed  CAS  Google Scholar 

  • Mertens R, Eberle J, Arnscheidt A, Ledebur A, Weiler EW (1985) Monoclonal antibodies to plant growth regulators. II. Indole-3-acetic acid. Planta 166:389–393

    Article  CAS  Google Scholar 

  • Miyawaki K, Matsumoto-Kitano M, Kakimoto T (2004) Expression of cytokinin biosynthetic isopentenyltransferase genes in Arabidopsis: tissue specificity and regulation by auxin, cytokinin, and nitrate. Plant J 37:128–138

    Article  PubMed  CAS  Google Scholar 

  • Morris DA, Kadir GO, Barry AJ (1973) Auxin transport in intact pea seedlings (Pisum sativum L.): the inhibition of transport by 2,3,5-triiodobenzoic acid. Planta 110:173–182

    Article  CAS  Google Scholar 

  • Moubayidin L, Di Mambro R, Sabatini S (2009) Cytokinin-auxin crosstalk. Trends Plant Sci 14:557–562

    Article  PubMed  CAS  Google Scholar 

  • Muday GK, Rahman A, Binder BM (2012) Auxin and ethylene: collaborators or competitors? Trends Plant Sci 17:181–195

    Article  PubMed  CAS  Google Scholar 

  • Müller A, Düchting P, Weiler EW (2002) A multiplex GC-MS/MS technique for the sensitivity and qualitative single-run analysis of acidic phytohormones and related compounds, and its application to Arabidopsis thaliana. Planta 216:44–56

    Article  PubMed  CAS  Google Scholar 

  • Nieminen K, Immanen J, Laxell M, Kauppinen L, Tarkowski P, Dolezal K, Tähtiharju S, Elo A, Decourteix M, Ljung K, Bhalerao R, Keinonen K, Albert VA, Helariutta Y (2008) Cytokinin signaling regulates cambial development in poplar. Proc Natl Acad Sci USA 105:20032–20037

    Article  PubMed  CAS  Google Scholar 

  • Nieminen K, Robischon M, Immanen J, Helariutta Y (2012) Towards optimizing wood development in bioenergy trees. New Phytol 194:46–53

    Article  PubMed  CAS  Google Scholar 

  • Nugroho WD, Yamagishi Y, Nakaba S, Fukuhara S, Begum S, Sri Nugroho Marsoem SN, Ko J-H, Jin H-O, Funada R (2012) Gibberellin is required for the formation of tension wood and stem gravitropism in Acacia mangium seedlings. Ann Bot 110(4):887–895

    Article  PubMed  CAS  Google Scholar 

  • Oda Y, Fukuda H (2012) Secondary cell wall patterning during xylem differentiation. Curr Opin Plant Biol 15:38–44

    Article  PubMed  CAS  Google Scholar 

  • Olson ME, Rosell JA (2013) Vessel diameter-stem diameter scaling across woody angiosperms and the ecological causes of xylem vessel diameter variation. New Phytol 197:1204–1213

    Article  PubMed  Google Scholar 

  • Palme P, Gälweiler L (1999) PIN-pointing the molecular basis of auxin transport. Curr Opin Plant Biol 2:375–381

    Article  PubMed  CAS  Google Scholar 

  • Palni LMS, Burch L, Horgan R (1988) The effect of auxin concentration on cytokinin stability and metabolism. Planta 174:231–234

    Article  CAS  Google Scholar 

  • Pesquet E, Tuominen H (2011) Ethylene stimulates tracheary element differentiation in Zinnia elegans cell cultures. New Phytol 190:138–149

    Article  CAS  Google Scholar 

  • Priestley JH, Scott LI (1936) A note upon summer wood production in the tree. Proc Leeds Phil Soc 3:235–248

    Google Scholar 

  • Ragni L, Nieminen K, Pacheco-Villalobos D, Sibout R, Schwechheimer C, Hardtke CS (2011) Mobile gibberellin directly stimulates Arabidopsis hypocotyl xylem expansion. Plant Cell 23:1322–1336

    Article  PubMed  CAS  Google Scholar 

  • Rahayu YS, Walch-Liu P, Neumann G, Römheld V, von Wirén N, Bangerth F (2005) Root-derived cytokinins as long-distance signals for NO3- -induced stimulation of leaf growth. J Exp Bot 56:1143–1152

    Article  PubMed  CAS  Google Scholar 

  • Ralph SG, Hudgins JW, Jancsik S, Franceschi VR, Bohlmann J (2007) Aminocyclopropane carboxylic acid synthase is a regulated step in ethylene-dependent induced conifer defense. Full-length cDNA cloning of a multigene family, differential constitutive, and wound- and insect-induced expression, and cellular and subcellular localization in spruce and Douglas fir. Plant Physiol 143:410–424

    Article  PubMed  CAS  Google Scholar 

  • Rathgeber CB, Rossi S, Bontemps JD (2011) Cambial activity related to tree size in a mature silver-fir plantation. Ann Bot 108:429–438

    Article  PubMed  Google Scholar 

  • Raven PH, Evert RF, Eichhorn SE (2005) Biology of plants, 7th edn. Freeman, New York

    Google Scholar 

  • Reinhardt D, Pesce E-R, Stieger P, Mandel T, Baltensperger K, Bennett M, Traas J, Friml J, Kuhlemeier C (2003) Regulation of phyllotaxis by polar auxin transport. Nature 426:255–260

    Article  PubMed  CAS  Google Scholar 

  • Roberts LW, Gahan BP, Aloni R (1988) Vascular differentiation and plant growth regulators. Springer, Berlin

    Book  Google Scholar 

  • Romano CP, Hein MB, Klee HJ (1991) Inactivation of auxin in tobacco transformed with the indoleacetic acid-lysine synthetase gene of Pseudomonas savastanoi. Genes Dev 5:438–446

    Article  PubMed  CAS  Google Scholar 

  • Ruffel S, Krouk G, Ristova D, Shasha D, Birnbaum KD, Coruzzi GM (2011) Nitrogen economics of root foraging: transitive closure of the nitrate–cytokinin relay and distinct systemic signaling for N supply vs. demand. Proc Natl Acad Sci USA 108:18524–18529

    Article  PubMed  CAS  Google Scholar 

  • Runions J, Friml J (2011) Recycling, clustering, and endocytosis jointly maintain PIN auxin carrier polarity at the plasma membrane. Mol Syst Biol 7:540

    PubMed  Google Scholar 

  • Sachs T (1981) The control of patterned differentiation of vascular tissues. Adv Bot Res 9:151–262

    Article  Google Scholar 

  • Sachs T (1991) Callus and tumor development. In: Sachs T (ed) Pattern formation in plant tissues. Cambridge University Press, Cambridge, pp 38–55

    Chapter  Google Scholar 

  • Sachs T (2000) Integrating cellular and organismal aspects of vascular differentiation. Plant Cell Physiol 41:649–656

    Article  PubMed  CAS  Google Scholar 

  • Sachs T, Cohen D (1982) Circular vessels and the control of vascular differentiation in plants. Differentiation 21:22–26

    Article  Google Scholar 

  • Sakakibara H, Takei K, Hirose N (2006) Interactions between nitrogen and cytokinin in the regulation of metabolism and development. Trends Plant Sci 11:440–448

    Article  PubMed  CAS  Google Scholar 

  • Saks Y, Feigenbaum P, Aloni R (1984) Regulatory effect of cytokinin on secondary xylem fiber formation in an in vivo system. Plant Physiol 76:638–642

    Article  PubMed  CAS  Google Scholar 

  • Salleo S, LoGullo MA, Siracusano L (1984) Distribution of vessel ends in stems of some diffuse and ring-porous trees: the nodal region as ‘safety zones’ of the water conducting system. Ann Bot 54:543–552

    Google Scholar 

  • Sauer M, Balla J, Luschnig C, Wisniewska J, Reinöhl V, Friml J, Benková E (2006) Canalization of auxin flow by Aux/IAA-ARF-dependent feedback regulation of PIN polarity. Genes Dev 20:2902–2911

    Article  PubMed  CAS  Google Scholar 

  • Savaldi-Goldstein S, Peto C, Chory J (2007) The epidermis both drives and restricts plant shoot growth. Nature 446:199–202

    Article  PubMed  CAS  Google Scholar 

  • Savidge RA (1996) Xylogenesis, genetic and environmental regulation. IAWA J 17:269–310

    Google Scholar 

  • Scarpella E, Helariutta Y (2010) Vascular pattern formation in plants. Curr Top Dev Biol 91:221–265

    Article  PubMed  CAS  Google Scholar 

  • Scarpella E, Marcos D, Friml J, Berleth T (2006) Control of leaf vascular patterning by polar auxin transport. Genes Dev 20:1015–1027

    Article  PubMed  CAS  Google Scholar 

  • Scheres B, Xu J (2006) Polar auxin transport and patterning: grow with the flow. Genes Dev 20:922–926

    Article  PubMed  CAS  Google Scholar 

  • Schmidt A, Nagel R, Krekling T, Christiansen E, Gershenzon J, Krokene P (2011) Induction of isoprenyl diphosphate synthases, plant hormones and defense signalling genes correlates with traumatic resin duct formation in Norway spruce (Picea abies). Plant Mol Biol 77:577–590

    Article  PubMed  CAS  Google Scholar 

  • Schrader J, Baba K, May ST, Palme K, Bennet M, Bhalerao RP, Sandberg G (2003) Polar auxin transport in the wood-forming tissue of hybrid aspen is under simultaneous control of developmental and environmental signals. Proc Natl Acad Sci USA 100:10096–10101

    Article  PubMed  CAS  Google Scholar 

  • Schwalm K, Aloni R, Langhans M, Heller W, Stich S, Ullrich CI (2003) Flavonoid-related regulation of auxin accumulation in Agrobacterium tumefaciens-induced plant tumors. Planta 218:163–178

    Article  PubMed  CAS  Google Scholar 

  • Sehr EM, Agusti J, Lehner R, Farmer EE, Schwarz M, Greb T (2010) Analysis of secondary growth in the Arabidopsis shoot reveals a positive role of jasmonate signalling in cambium formation. Plant J 63:811–822

    Article  PubMed  CAS  Google Scholar 

  • Sieburth LE (1999) Auxin is required for leaf vein pattern in Arabidopsis. Plant Physiol 121:1179–1190

    Article  PubMed  CAS  Google Scholar 

  • Sieburth LE, Deyholos MK (2006) Vascular development: the long and winding road. Curr Opin Plant Biol 9:48–54

    Article  PubMed  CAS  Google Scholar 

  • Spicer R, Groover A (2010) Evolution of development of vascular cambia and secondary growth. New Phytol 186:577–592

    Article  PubMed  CAS  Google Scholar 

  • Sundberg B, Uggla C, Tuominen H (2000) Cambial growth and auxin gradients. In: Savidge RA, Barnett JR, Napier R (eds) Cell and molecular biology of wood formation. BIOS Scientific Publishers, Oxford, pp 169–188

    Google Scholar 

  • Suzuki M, Yoda K, Suzuki H (1996) Phenological comparison of the onset of vessel formation between ring-porous and diffuse-porous deciduous trees in a Japanese temperate forest. IAWA J 17:431–444

    Google Scholar 

  • Swarup R, Friml J, Marchant A, Ljung K, Sandberg G, Palme K, Bennett M (2001) Localization of the auxin permease AUX1 suggests two functionally distinct hormone transport pathways operate in the Arabidopsis root apex. Genes Dev 15:2648–2653

    Article  PubMed  CAS  Google Scholar 

  • Taiz L, Zeiger E (2006) Plant physiology, 4th edn. Sinauer, Sunderland, MA

    Google Scholar 

  • Takei K, Sakakibara H, Taniguchi M, Sugiyama T (2001) Nitrogen-dependent accumulation of cytokinins in root and the translocation to leaf: implication of cytokinin species that induces gene expression of maize response regulator. Plant Cell Physiol 42:85–93

    Article  PubMed  CAS  Google Scholar 

  • Takei K, Ueda N, Aoki K, Kuromori T, Hirayama T, Shinozaki K, Yamaya T, Sakakibara H (2004) AtIPT3 is a key determinant of nitrate-dependent cytokinin biosynthesis in Arabidopsis. Plant Cell Physiol 45:1053–1062

    Article  PubMed  CAS  Google Scholar 

  • Tanaka M, Takei K, Kojima M, Sakakibara H, Mori H (2006) Auxin controls local cytokinin biosynthesis in the nodal stem in apical dominance. Plant J 45:1028–1036

    Article  PubMed  CAS  Google Scholar 

  • Teale WD, Paponov IA, Palme K (2006) Auxin in action: signalling, transport and the control of plant growth and development. Nat Rev Mol Cell Biol 7:847–859

    Article  PubMed  CAS  Google Scholar 

  • Thorpe MR, Ferrieri AP, Herth MM, Ferrieri RA (2007) 11C-imaging: methyl jasmonate moves in both phloem and xylem, promotes transport of jasmonate, and of photoassimilate even after proton transport is decoupled. Planta 226:541–551

    Article  PubMed  CAS  Google Scholar 

  • Timell TE (1986) Compression wood in gymnosperms, vol 2. Springer, Berlin

    Google Scholar 

  • Tokunaga N, Uchimura N, Sato Y (2006) Involvement of gibberellin in tracheary element differentiation and lignification in Zinnia elegans xylogenic culture. Protoplasma 228:179–187

    Article  PubMed  CAS  Google Scholar 

  • Trewavas AJ (1983) Is plant development regulated by changes in concentration of growth substances or by changes in the sensitivity to growth substances? TIBS 8:354–357

    CAS  Google Scholar 

  • Turner S, Sieburth LE (2003) Vascular patterning. In: Somerville CR, Meyerowitz EM (eds) The Arabidopsis book, vol 2. American Society of Plant Biologists, Rockville, MD. doi:10.1199/tab.0073, http://www.aspb.org/publications/arabidopsis/

    Google Scholar 

  • Turner S, Gallois P, Brown D (2007) Tracheary element differentiation. Annu Rev Plant Biol 58:407–433

    Article  PubMed  CAS  Google Scholar 

  • Tyree MT, Zimmermann MH (2002) Xylem structure and the ascent of Sap, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  • Uggla C, Moritz T, Sandberg G, Sundberg B (1996) Auxin as a positional signal in pattern formation in plants. Proc Natl Acad Sci USA 93:9282–9286

    Article  PubMed  CAS  Google Scholar 

  • Uggla C, Mellerowicz EJ, Sundberg B (1998) Indole-3-acetic acid controls cambial growth in Scots pine by positional signaling. Plant Physiol 117:113–121

    Article  PubMed  CAS  Google Scholar 

  • Ullrich CI, Aloni R (2000) Vascularization is a general requirement for growth of plant and animal tumours. J Exp Bot 51:1951–1960

    Article  PubMed  CAS  Google Scholar 

  • Ulmasov T, Murfett J, Hagen G, Guilfoyle TJ (1997) Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 9:1963–1971

    PubMed  CAS  Google Scholar 

  • Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455:195–200

    Article  PubMed  CAS  Google Scholar 

  • Ursache R, Nieminen K, Helariutta Y (2012) Genetic and hormonal regulation of cambial development. Physiol Plant 147:36–45

    Google Scholar 

  • Wabnik K, Kleine-Vehn J, Balla J, Sauer M, Naramoto S, Reinöhl V, Merks RM, Govaerts W, Friml J (2010) Emergence of tissue polarization from synergy of intracellular and extracellular auxin signaling. Mol Syst Biol 6:447

    Article  PubMed  CAS  Google Scholar 

  • Wächter R, Fischer K, Gäbler R, Kühnemann F, Urban W, Bögemann GM, Voesenek LACJ, Blom CWPM, Ullrich CI (1999) Ethylene production and ACC-accumulation in Agrobacterium tumefaciens-induced plant tumours and their impact on tumour and host stem structure and function. Plant Cell Environ 22:1263–1273

    Article  Google Scholar 

  • Wheeler EA, Baas P (1991) A survey of the fossil record for dicotyledonous wood and its significance for evolutionary and ecological wood anatomy. IAWA Bull ns 12:275–332

    Google Scholar 

  • Xue-Xuan X, Hong-Bo S, Yuan-Yuan M, Gang X, Jun-Na S, Dong-Gang G, Cheng-Jiang R (2010) Biotechnological implications from abscisic acid (ABA) roles in cold stress and leaf senescence as an important signal for improving plant sustainable survival under abiotic-stressed conditions. Crit Rev Biotechnol 30:222–230

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi M, Goué N, Igarashi H, Ohtani M, Nakano Y, Mortimer JC, Nishikubo N, Kubo M, Katayama Y, Kakegawa K, Dupree P, Demura T (2010a) VASCULAR-RELATED NAC-DOMAIN6 and VASCULAR-RELATED NAC-DOMAIN7 effectively induce transdifferentiation into xylem vessel elements under control of an induction system. Plant Physiol 153:906–914

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi M, Ohtani M, Mitsuda N, Kubo M, Ohme-Takagi M, Fukuda H, Demura T (2010b) VND-INTERACTING2, a NAC domain transcription factor, negatively regulates xylem vessel formation in Arabidopsis. Plant Cell 22:1249–1263

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi M, Mitsuda N, Ohtani M, Ohme-Takagi M, Kato K, Demura T (2011) VASCULAR-RELATED NAC-DOMAIN7 directly regulates the expression of a broad range of genes for xylem vessel formation. Plant J 66:579–590

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto F, Angeles G, Kozlowski TT (1987) Effect of ethrel on stem anatomy of Ulmus americana seedlings. IAWA Bull NS 8:3–9

    Google Scholar 

  • Yamamoto F, Kozlowski TT (1987) Effect of ethrel on growth and stem anatomy of Pinus halepensis seedlings. IAWA Bull ns 8:11–19

    CAS  Google Scholar 

  • Yamamoto R, Demura T, Fukuda H (1997) Brassinosteroids induce entry into the final stage of tracheary element differentiation in cultured Zinnia cells. Plant Cell Physiol 38:980–983

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto R, Fujioka S, Demura T, Takatsuto S, Yoshida S, Fukuda H (2001) Brassinosteroid levels increase drastically prior to morphogenesis of tracheary elements. Plant Physiol 125:556–563

    Article  PubMed  CAS  Google Scholar 

  • Zhang R, Zhang X, Wang J, Letham DS, McKinney SA, Higgins TJV (1995) The effect of auxin on cytokinin levels and metabolism in transgenic tobacco tissue expressing an ipt gene. Planta 196:84–94

    Article  CAS  Google Scholar 

  • Zhang S, Wei Y, Lu Y, Wang X (2009) Mechanisms of brassinosteroids interacting with multiple hormones. Plant Signal Behav 12:1117–1120

    Article  Google Scholar 

  • Zhang J, Elo A, Helariutta Y (2011) Arabidopsis as a model for wood formation. Curr Opin Biotechnol 22:293–299

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann MH (1983) Xylem structure and the ascent of sap. Springer, Berlin

    Google Scholar 

  • Zimmermann MH, Jeje AA (1981) Vessel-length distribution in stems of some American woody plants. Can J Bot 59:1882–1892

    Article  Google Scholar 

  • Zobel BJ, van Buijtenen JP (1989) Wood variation, its causes and control. Springer, Berlin

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roni Aloni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Aloni, R. (2013). The Role of Hormones in Controlling Vascular Differentiation. In: Fromm, J. (eds) Cellular Aspects of Wood Formation. Plant Cell Monographs, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36491-4_4

Download citation

Publish with us

Policies and ethics