Skip to main content

The Role of Volatiles in Plant–Plant Interactions

  • Chapter
  • First Online:
Long-Distance Systemic Signaling and Communication in Plants

Part of the book series: Signaling and Communication in Plants ((SIGCOMM,volume 19))

Abstract

Plants respond to herbivory by emitting volatile organic compounds (VOCs), which mediate diverse ecological interactions between plants and other organisms. Almost three decades after it was first proposed that plants respond to VOCs from injured neighbors, this phenomenon is now well established and has been documented across multiple levels of biological organization (i.e., molecular, biochemical, and ecological). Recent studies have also shown that herbivore-induced VOCs can play a role in within-plant communication. In general, VOCs appear frequently to prime defenses in plants, enhancing plant responses to subsequent herbivore attack. The mechanisms underlying such effects remain largely unknown, though we have recently begun to learn more about the genes involved in plant–plant signaling. This chapter summarizes our current knowledge about the role of VOCs in plant-to-plant interactions. By synthesizing these findings, our chapter intends to point out gaps in existing research, in particular the need for further studies under natural conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alborn HT, Turlings TCJ, Jones TH, Stenhagen G, Loughrin JH, Tumlinson JH (1997) An elicitor of plant volatiles from beet armyworm oral secretion. Science 276:945–949

    Article  CAS  Google Scholar 

  • Ali JG, Alborn HT, Campos-Herrera R, Kaplan F, Duncan LW, Rodriguez-Saona C, Koppenhöfer AM, Stelinski LL (2012) Subterranean, herbivore-induced plant volatile increases biological control activity of multiple beneficial nematode species in distinct habitats. PLoS One 7:e38146

    Article  PubMed  CAS  Google Scholar 

  • Arimura G-I, Tashiro K, Kuhara S, Nishioka T, Ozawa R, Takabayashi J (2000) Gene responses in bean leaves induced by herbivory and by herbivore-induced volatiles. Biochem Biophys Res Commun 277:305–310

    Article  PubMed  CAS  Google Scholar 

  • Arimura G-I, Ozawa R, Horiuchi J, Nishioka T, Takabayashi J (2001) Plant–plant interactions mediated by volatiles emitted from plants infested by spider mites. Biochem Syst Ecol 29:1049–1061

    Article  CAS  Google Scholar 

  • Arimura G-I, Ozawa R, Nishioka T, Boland W, Koch T, Kühnemann F, Takabayashi J (2002) Herbivore-induced volatiles induce the emission of ethylene in neighboring lima bean plants. Plant J 29:87–98

    Article  PubMed  CAS  Google Scholar 

  • Arimura G-I, Matsui K, Takabayashi J (2009) Chemical and molecular ecology of herbivore-induced plant volatiles: proximate factors and their ultimate functions. Plant Cell Physiol 50:911–923

    Article  PubMed  CAS  Google Scholar 

  • Arimura G-i, Muroi A, Nishihara M (2012) Plant–plant–plant communications, mediated by (E)-β-ocimene emitted from transgenic tobacco plants, prime indirect defense responses of lima beans. J Plant Interact 7:193–196

    Article  CAS  Google Scholar 

  • Bais HP, Park SW, Weir TL, Callaway RM, Vivanco JM (2004) How plants communicate using the underground information superhighway. Trends Plant Sci 9:26–32

    Article  PubMed  CAS  Google Scholar 

  • Baldwin IT, Schultz JC (1983) Rapid changes in tree leaf chemistry induced by damage: evidence for communication between plants. Science 221:277–279

    Article  PubMed  CAS  Google Scholar 

  • Baldwin IT, Halitschke R, Paschold A, von Dahl CC, Preston CA (2006) Volatile signaling in plant–plant interactions: talking trees in the genomics era. Science 311:812–815

    Article  PubMed  CAS  Google Scholar 

  • Bate NJ, Rothstein SJ (1998) C6-volatiles derived from the lipoxygenase pathway induce a subset of defense-related genes. Plant J 16:561–569

    Article  PubMed  CAS  Google Scholar 

  • Bernasconi ML, Turlings TCJ, Ambrosetti L, Bassetti P, Dorn S (1998) Herbivore-induced emissions of maize volatiles repel the corn leaf aphid, Rhopalosiphum maidis. Entomol Exp Appl 87:133–142

    Article  CAS  Google Scholar 

  • Blande JD, Holopainen JK, Li T (2010) Air pollution impedes plant-to-plant communication by volatiles. Ecol Lett 13:1172–1181

    Article  PubMed  Google Scholar 

  • Boland W, Koch T, Krumm T, Piel J, Jux A (1999) Induced biosynthesis of insect semiochemicals in plants. In: Chadwick DJ, Goode J (eds) Insect–plant interactions and induced plant defence, Novartis Foundation Symposium 223. Wiley, Chicester, pp 110–126

    Google Scholar 

  • Broadway RM, Duffey SS (1986) Plant proteinase inhibitors: mechanism of action and effect on the growth and digestive physiology of larval Heliothis zea and Spodoptera exigua. J Insect Physiol 32:827–833

    Article  CAS  Google Scholar 

  • Bruin J, Dicke M, Sabelis MW (1992) Plants are better protected against spider-mites after exposure to volatiles from infested conspecifics. Experientia 48:525–529

    Article  CAS  Google Scholar 

  • Bruin J, Sabelis MW, Dicke M (1995) Do plants tap SOS signals from their infested neighbors? TREE 10:167–170

    PubMed  CAS  Google Scholar 

  • Chamberlain K, Guerrieri E, Pennacchio F, Pettersson J, Pickett JA, Poppy GM, Powell W, Wadhams LJ, Woodcock CW (2001) Can aphid-induced plant signals be transmitted aerially and through the rhizosphere? Biochem Syst Ecol 29:1063–1074

    Article  CAS  Google Scholar 

  • Choh Y, Takabayashi J (2006) Herbivore-induced extra-floral nectar production in Lima bean plants enhanced by previous exposure to volatiles from infested conspecifics. J Chem Ecol 32:2073–2077

    Article  PubMed  CAS  Google Scholar 

  • Choh Y, Takabayashi J (2007) Duration of priming of two indirect plant defenses. Plant Signal Behav 2:13–14

    Article  PubMed  Google Scholar 

  • Choh Y, Shimoda T, Ozawa R, Dicke M, Takabayashi J (2004) Lima bean leaves exposed to volatiles from herbivore-induced conspecific plants emit carnivore attractants: active or passive response? J Chem Ecol 30:1305–1317

    Article  PubMed  CAS  Google Scholar 

  • Choh Y, Kugimiya S, Takabayashi J (2006) Induced production of extrafloral nectar in intact lima bean plants in response to volatiles from spider mite-infested conspecific plants as a possible indirect defense against spider mites. Oecologia 147:455–460

    Article  PubMed  Google Scholar 

  • Choudhary DK, Johri BN, Prakash A (2008) Volatiles as priming agents that initiate plant growth and defense responses. Curr Sci 94:595–604

    CAS  Google Scholar 

  • Cunningham JP, Moore CJ, Zalucki MP, Cribb BW (2006) Insect odour perception: recognition of odour components by flower foraging moths. Proc R Soc B 273:2035–2040

    Article  PubMed  Google Scholar 

  • de Bruyne M, Baker TC (2008) Odor detection in insects: volatile codes. J Chem Ecol 34:882–897

    Article  PubMed  CAS  Google Scholar 

  • De Moraes CM, Lewis WJ, Pare PW, Alborn HT, Tumlinson JH (1998) Herbivore-infested plants selectively attract parasitoids. Nature 393:570–573

    Article  Google Scholar 

  • De Moraes CM, Mescher MC, Tumlinson JH (2001) Caterpillar-induced nocturnal plant volatiles repel conspecific females. Nature 410:577–580

    Article  PubMed  CAS  Google Scholar 

  • Degen T, Dillmann C, Marion-Poll F, Turlings TCJ (2004) High genetic variability of herbivore-induced volatile emission within a broad range of maize inbred lines. Plant Physiol 135:1928–1938

    Article  PubMed  CAS  Google Scholar 

  • Dicke M (1999) Are herbivore-induced plant volatiles reliable indicators of herbivore identity to foraging carnivorous arthropods? Entomol Exp Appl 91:131–142

    Article  CAS  Google Scholar 

  • Dicke M, Bruin J (2001) Chemical information transfer between plants: back to the future. Biochem Syst Ecol 29:981–994

    Article  CAS  Google Scholar 

  • Dicke M, Dijkman H (2001) Within-plant circulation of systemic elicitor of induced defence and release from roots of elicitor that affects neighbouring plants. Biochem Syst Ecol 29:1075–1087

    Article  CAS  Google Scholar 

  • Dicke M, Sabelis MW (1988) How plants obtain predatory mites as bodyguards. Neth J Zool 38:148–165

    Article  Google Scholar 

  • Dicke M, Van Loon JJA (2000) Multitrophic effects of herbivore-induced plant volatiles in an evolutionary context. Entomol Exp Appl 97:237–249

    Article  CAS  Google Scholar 

  • Dicke M, Vet LEM (1999) Plant–carnivore interactions: evolutionary and ecological consequences for plant, herbivore and carnivore. In: Olff H, Brown VK, Drent RH (eds) Herbivores: between plants and predators. Blackwell, Oxford, pp 483–520

    Google Scholar 

  • Dicke M, van Beek TA, Posthumus MA, Ben Dom N, van Bokhoven H, de Groot AE (1990) Isolation and identification of volatile kairomone that affects acarine predator-prey interactions: involvement of host plant in its production. J Chem Ecol 16:381–396

    Article  CAS  Google Scholar 

  • Dicke M, van Baarlen P, Wessels R, Dijkman H (1993) Herbivory induces systemic production of plant volatiles that attract predators of the herbivore: extraction of endogenous elicitor. J Chem Ecol 19:581–599

    Article  CAS  Google Scholar 

  • Dolch R, Tscharntke T (2000) Defoliation of alders (Alnus glutinosa) affects herbivory by leaf beetles on undamaged neighbours. Oecologia 125:504–511

    Article  Google Scholar 

  • Dong F, Yang Z, Baldermann S, Sato Y, Asai T, Watanabe N (2011) Herbivore-induced volatiles from tea (Camellia sinensis) plants and their involvement in intraplant communication and changes in endogenous nonvolatile metabolites. J Agric Food Chem 59:13131–13135

    Article  PubMed  CAS  Google Scholar 

  • Dudareva N, Pichersky E, Gershenzon J (2004) Biochemistry of plant volatiles. Plant Physiol 135:1893–1902

    Article  PubMed  CAS  Google Scholar 

  • Dudareva N, Negre F, Nagegowda DA, Orlova I (2006) Plant volatiles: recent advances and future perspectives. Crit Rev Plant Sci 25:417–440

    Article  CAS  Google Scholar 

  • Engelberth J, Alborn HT, Schmelz EA, Tumlinson JH (2004) Airborne signals prime plants against insect herbivore attack. Proc Natl Acad Sci USA 101:1781–1785

    Article  PubMed  CAS  Google Scholar 

  • Farag MA, Paré PW (2002) C-6-green leaf volatiles trigger local and systemic VOC emissions in tomato. Phytochemistry 61:545–554

    Article  PubMed  CAS  Google Scholar 

  • Farmer EE (2001) Surface-to-air signals. Nature 411:854–856

    Article  PubMed  CAS  Google Scholar 

  • Farmer EE, Ryan CA (1990) Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc Natl Acad Sci USA 87:7713–7716

    Article  PubMed  CAS  Google Scholar 

  • Fowler SV, Lawton JH (1985) Rapidly induced defenses and talking trees: the devil’s advocate position. Am Nat 126:181–195

    Article  Google Scholar 

  • Frost CJ, Appel HM, Carlson JE, De Moraes CM, Mescher MC, Schultz JC (2007) Within-plant signalling via volatiles overcomes vascular constraints on systemic signalling and primes responses against herbivores. Ecol Lett 10:490–498

    Article  PubMed  Google Scholar 

  • Frost CJ, Mescher MC, Carlson JE, De Moraes CM (2008a) Why do distance limitations exist on plant–plant signaling via airborne volatiles? Plant Signal Behav 3:466–468

    Article  PubMed  Google Scholar 

  • Frost CJ, Mescher MC, Carlson JE, De Moraes CM (2008b) Plant defense priming against herbivores: getting ready for a different battle. Plant Physiol 146:818–824

    Article  PubMed  CAS  Google Scholar 

  • Frost CJ, Mescher MC, Dervinis C, Davis JM, Carlson JE, De Moraes CM (2008c) Priming defense genes and metabolites in hybrid poplar by the green leaf volatile cis-3-hexenyl acetate. New Phytol 180:722–734

    Article  PubMed  CAS  Google Scholar 

  • Girón-Calva PS, Molina-Torres J, Heil M (2012) Volatile dose and exposure time impact perception in neighboring plants. J Chem Ecol 38:226–228

    Article  PubMed  CAS  Google Scholar 

  • Glinwood R, Ninkovic V, Pettersson J, Ahmed E (2004) Barley exposed to aerial allelopathy from thistles (Cirsium spp) becomes less acceptable to aphids. Ecol Entomol 29:188–195

    Article  Google Scholar 

  • Glinwood R, Gradin T, Karpinska B, Ahmed E, Johsson L, Ninkovic V (2007) Aphid acceptance of barley exposed to volatile phytochemicals differs between plants exposed in daylight and darkness. Plant Signal Behav 2:321–326

    Article  PubMed  Google Scholar 

  • Glinwood R, Ahmed E, Qvarfordt E, Ninkovic V, Pettersson J (2009) Airborne interactions between undamaged plants of different cultivars affect insect herbivores and natural enemies. Arthropod–Plant Interact 3:215–224

    Article  Google Scholar 

  • Godard KA, White R, Bohlmann J (2008) Monoterpene-induced molecular responses in Arabidopsis thaliana. Phytochemistry 69:1838–1849

    Article  PubMed  CAS  Google Scholar 

  • Guerrieri E, Poppy GM, Powell W, Rao R, Pennacchio F (2002) Plant-to-plant communication mediating in-flight orientation of Aphidius ervi. J Chem Ecol 28:1703–1715

    Article  PubMed  CAS  Google Scholar 

  • Hare JD (2011) Ecological role of volatiles produced by plants in response to damage by herbivorous insects. Annu Rev Entomol 56:161–180

    Article  PubMed  CAS  Google Scholar 

  • Haukioja E, Suomela J, Neuvonen S (1985) Long-term inducible resistance in a birch foliage: triggering cues and efficacy on a defoliator. Oecologia 65:363–369

    Article  Google Scholar 

  • Heil M (2004) Direct defense or ecological costs? Responses of herbivorous beetles to volatiles released by wild Lima bean (Phaseolus lunatus). J Chem Ecol 30:1289–1295

    Article  PubMed  CAS  Google Scholar 

  • Heil M (2010) Within-plant signalling by volatiles triggers systemic defences. In: Baluška F, Ninkovic V (eds) Plant communication from an ecological perspective. Springer, Berlin, pp 99–112

    Chapter  Google Scholar 

  • Heil M, Adame-Álvarez RM (2010) Short signalling distances make plant communication a soliloquy. Biol Lett 6:843–845

    Article  PubMed  Google Scholar 

  • Heil M, Karban R (2010) Explaining the evolution of plant communication by airborne signals. Trends Ecol Evol 25:137–144

    Article  PubMed  Google Scholar 

  • Heil M, Kost C (2006) Priming of indirect defences. Ecol Lett 9:813–817

    Article  PubMed  Google Scholar 

  • Heil M, Silva Bueno JC (2007) Within-plant signaling by volatiles leads to induction and priming of an indirect plant defense in nature. Proc Natl Acad Sci 104:5467–5472

    Article  PubMed  CAS  Google Scholar 

  • Heil M, Ton J (2008) Long-distance signalling in plant defence. Trends Plant Sci 13:264–272

    Article  PubMed  CAS  Google Scholar 

  • Heil M, Lion U, Boland W (2008) Defense-inducing volatiles: In search of the active motif. J Chem Ecol 34:601–604

    Article  PubMed  CAS  Google Scholar 

  • Helms AM, De Moraes CM, Tooker JF, Mescher MC (2013) Exposure of Solidago altissima plants to volatile emissions of an insect antagonist (Eurosta solidaginis) deters subsequent herbivory. Proc Natl Acad Sci USA 110:199–204

    Google Scholar 

  • Holopainen J, Blande J (2012) Molecular plant volatile communication. In: López-Larrea C (ed) Sensing in nature, vol 739. Springer, New York, pp 17–31

    Chapter  Google Scholar 

  • Jarchow ME, Cook BJ (2009) Allelopathy as a mechanism for the invasion of Typha angustifolia. Plant Ecol 204:113–124

    Article  Google Scholar 

  • Karban R (2001) Communication between sagebrush and wild tobacco in the field. Biochem Syst Ecol 29:995–1005

    Article  CAS  Google Scholar 

  • Karban R (2008) Plant behaviour and communication. Ecol Lett 11:727–739

    Article  PubMed  Google Scholar 

  • Karban R (2011) The ecology and evolution of induced resistance against herbivores. Funct Ecol 25:339–347

    Article  Google Scholar 

  • Karban R, Baldwin IT (1997) Induced responses to herbivory. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Karban R, Baxter K (2001) Induced resistance in wild tobacco with clipped sagebrush neighbors: The role of herbivore behavior. J Insect Behav 14:147–156

    Article  Google Scholar 

  • Karban R, Maron J (2002) The fitness consequences of interspecific eavesdropping between plants. Ecology 83:1209–1213

    Article  Google Scholar 

  • Karban R, Shiojiri K (2009) Self-recognition affects plant communication and defense. Ecol Lett 12:502–506

    Article  PubMed  Google Scholar 

  • Karban R, Baldwin I, Baxter K, Laue G, Felton G (2000) Communication between plants: induced resistance in wild tobacco plants following clipping of neighboring sagebrush. Oecologia 125:66–71

    Article  Google Scholar 

  • Karban R, Maron J, Felton GW, Ervin G, Eichenseer H (2003) Herbivore damage to sagebrush induces resistance in wild tobacco: evidence for eavesdropping between plants. Oikos 100:325–332

    Article  Google Scholar 

  • Karban R, Huntzinger M, McCall AC (2004) The specificity of eavesdropping on sagebrush by other plants. Ecology 85:1846–1852

    Article  Google Scholar 

  • Karban R, Shiojiri K, Huntzinger M, McCall AC (2006) Damage-induced resistance in sagebrush: volatiles are key to intra- and interplant communication. Ecology 87:922–930

    Article  PubMed  Google Scholar 

  • Karban R, Ishizaki S, Shiojiri K (2012) Long-term demographic consequences of eavesdropping for sagebrush. J Ecol 100:932–938

    Article  Google Scholar 

  • Kesselmeier J, Staudt M (1999) Biogenic volatile organic compounds (VOC): an overview on emission, physiology and ecology. J Atmos Chem 33:23–88

    Article  CAS  Google Scholar 

  • Kessler A, Baldwin IT (2001) Defensive function of herbivore-induced plant volatile emissions in nature. Science 291:2141–2144

    Article  PubMed  CAS  Google Scholar 

  • Kessler A, Halitschke R, Diezel C, Baldwin IT (2006) Priming of plant defense responses in nature by airborne signaling between Artemisia tridentata and Nicotiana attenuata. Oecologia 148:280–292

    Article  PubMed  Google Scholar 

  • Knudsen JT, Tollsten L, Bergstrom G (1993) Floral scents – a checklist of volatile compounds isolated by head-space techniques. Phytochemistry 33:253–280

    Article  CAS  Google Scholar 

  • Kost C, Heil M (2006) Herbivore-induced plant volatiles induce an indirect defence in neighbouring plants. J Ecol 94:619–628

    Article  CAS  Google Scholar 

  • Li T, Holopainen JK, Kokko H, Tervahauta AI, Blande JD (2012) Herbivore-induced aspen volatiles temporally regulate two different indirect defences in neighbouring plants. Funct Ecol 26:1176–1185

    Article  Google Scholar 

  • Maynard-Smith J, Harper D (2003) Animal signals. Oxford University Press, Oxford and New York

    Google Scholar 

  • Muroi A, Ramadan A, Nishihara M, Yamamoto M, Ozawa R, Takabayashi J, Arimura G-I (2011) The composite effect of transgenic plant volatiles for acquired immunity to herbivory caused by inter-plant communications. PLoS One 6:e24594

    Article  PubMed  CAS  Google Scholar 

  • Myers JH, Williams KS (1984) Does tent caterpillar attack reduce the food quality of red alder foliage? Oecologia 62:74–79

    Article  Google Scholar 

  • Nakamura S, Hatanaka A (2002) Green-leaf-derived C6-aroma compounds with potent antibacterial action that act on both gram-negative and gram-positive bacteria. J Agric Food Chem 50:7639–7644

    Article  PubMed  CAS  Google Scholar 

  • Ninkovic V, Al Abassi S, Ahmed E, Glinwood R, Pettersson J (2011) Effect of within-species plant genotype mixing on habitat preference of a polyphagous insect predator. Oecologia 166:391–400

    Article  PubMed  Google Scholar 

  • O’Donnell PJ, Calvert C, Atzorn R, Wasternack C, Leyser HMO, Bowles DJ (1996) Ethylene as a signal mediating the wound response of tomato plants. Science 274:1914–1917

    Article  PubMed  Google Scholar 

  • Orians C (2005) Herbivores, vascular pathways, and systemic induction: facts and artifacts. J Chem Ecol 31:2231–2242

    Article  PubMed  CAS  Google Scholar 

  • Orians CM, Pomerleau J, Ricco R (2000) Vascular architecture generates fine scale variation in systemic induction of proteinase inhibitors in tomato. J Chem Ecol 26:471–485

    Article  CAS  Google Scholar 

  • Paré PW, Tumlinson JH (1997) De novo biosynthesis of volatiles induced by insect herbivory in cotton plants. Plant Physiol 114:1161–1167

    PubMed  Google Scholar 

  • Paré PW, Tumlinson JH (1999) Plant volatiles as a defense against insect herbivores. Plant Physiol 121:325–331

    Article  PubMed  Google Scholar 

  • Paschold A, Halitschke R, Baldwin IT (2006) Using ‘mute’ plants to translate volatile signals. Plant J 45:275–291

    Article  PubMed  CAS  Google Scholar 

  • Pearse IS, Porensky LM, Yang LH, Stanton ML, Karban R, Bhattacharyya L, Cox R, Dove K, Higgins A, Kamoroff C, Kirk T, Knight C, Koch R, Parker C, Rollins H, Tanner K (2012) Complex consequences of herbivory and interplant cues in three annual plants. PLoS One 7:e38105

    Article  PubMed  CAS  Google Scholar 

  • Peng JY, Li ZH, Xiang H, Huang JH, Jia SH, Miao XX, Huang YP (2005) Preliminary studies on differential defense responses induced during plant communication. Cell Res 15:187–192

    Article  PubMed  CAS  Google Scholar 

  • Peng J, van Loon JJA, Zheng S, Dicke M (2011) Herbivore-induced volatiles of cabbage (Brassica oleracea) prime defence responses in neighbouring intact plants. Plant Biol 13:276–284

    Article  PubMed  CAS  Google Scholar 

  • Pierik R, Whitelam GC, Voesenek LACJ, de Kroon H, Visser EJW (2004) Canopy studies on ethylene-insensitive tobacco identify ethylene as a novel element in blue light and plant–plant signaling. Plant J 38:310–319

    Article  PubMed  CAS  Google Scholar 

  • Preston C, Laue G, Baldwin IT (2004) Plant–plant signaling: Application of trans- or cis-methyl jasmonate equivalent to sagebrush releases does not elicit direct defenses in native tobacco. J Chem Ecol 30:2193–2214

    Article  PubMed  CAS  Google Scholar 

  • Rasmann S, Köllner TG, Degenhardt J, Hiltpold I, Toepfer S, Kuhlmann U, Gershenzon J, Turlings TCJ (2005) Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434:732–737

    Article  PubMed  CAS  Google Scholar 

  • Rhoades DF (1983) Responses of alder and willow to attack by tent caterpillars and webworms: evidence for pheromonal sensitivity of willows. In: Hedin PA (ed) Plant resistance to insects. American Chemical Society, Washington, pp 55–68

    Chapter  Google Scholar 

  • Rodriguez-Saona C, Thaler JS (2005) Herbivore-induced responses and patch heterogeneity affect abundance of arthropods on plants. Ecol Entomol 30:156–163

    Article  Google Scholar 

  • Rodriguez-Saona CR, Rodriguez-Saona LE, Frost CJ (2009) Herbivore-induced volatiles in the perennial shrub, Vaccinium corymbosum, and their role in inter-branch signaling. J Chem Ecol 35:163–175

    Article  PubMed  CAS  Google Scholar 

  • Röse USR, Manukian A, Heath RR, Tumlinson JH (1996) Volatile semiochemicals released from undamaged cotton leaves: a systemic response of living plants to caterpillar damage. Plant Physiol 111:487–495

    PubMed  Google Scholar 

  • Runyon JB, Mescher MC, De Moraes CM (2006) Volatile chemical cues guide host location and host selection by parasitic plants. Science 313:1964–1967

    Article  PubMed  CAS  Google Scholar 

  • Ruther J, Fürstenau B (2005) Emission of herbivore-induced volatiles in absence of a herbivore- response of Zea mays to green leaf volatiles and terpenoids. Z Naturforschung C 60:743–756

    CAS  Google Scholar 

  • Ruther J, Kleier S (2005) Plant–plant signaling: ethylene synergizes volatile emission in Zea mays induced by exposure to (Z)-3-hexen-1-ol. J Chem Ecol 31:2217–2222

    Article  PubMed  CAS  Google Scholar 

  • Sabelis M, Janssen A, Pallini A, Venzon M, Bruin J, Drukker B, Scutareanu P (1999) Behavioral responses of predatory and herbivorous arthropods to induced plant volatiles: from evolutionary ecology to agricultural applications. In: Agrawal AA, Tuzun S, Bent E (eds) Induced plant defenses against pathogens and herbivores. APS Press, Saint Paul, MN, pp 269–296

    Google Scholar 

  • Shiojiri K, Karban R (2006) Plant age, communication, and resistance to herbivores: young sagebrush plants are better emitters and receivers. Oecologia 149:214–220

    Article  PubMed  Google Scholar 

  • Shiojiri K, Karban R (2008) Vascular systemic induced resistance for Artemisia cana and volatile communication for Artemisia douglasiana. Am Midl Nat 159:468–477

    Article  Google Scholar 

  • Shiojiri K, Kishimoto K, Ozawa R, Kugimiya S, Urashimo S, Arimura G, Horiuchi J, Nishioka T, Matsui K, Takabayashi J (2006) Changing green leaf volatile biosynthesis in plants: an approach for improving plant resistance against both herbivores and pathogens. Proc Natl Acad Sci USA 103:16672–16676

    Article  PubMed  CAS  Google Scholar 

  • Shiojiri K, Karban R, Ishizaki S (2009) Volatile communication among sagebrush branches affects herbivory: timing of active cues. Arthropod–Plant Interact 3:99–104

    Article  Google Scholar 

  • Shiojiri K, Karban R, Ishizaki S (2012a) Prolonged exposure is required for communication in sagebrush. Arthropod–Plant Interact 6:197–202

    Article  Google Scholar 

  • Shiojiri K, Ozawa R, Matsui K, Sabelis MW, Takabayashi J (2012b) Intermittent exposure to traces of green leaf volatiles triggers a plant response. Sci Rep 2:378

    Article  PubMed  CAS  Google Scholar 

  • Shulaev V, Silverman P, Raskin I (1997) Airborne signalling by methyl salicylate in plant pathogen resistance. Nature 385:718–721

    Article  CAS  Google Scholar 

  • Snoeren TAL, Kappers IF, Broekgaarden C, Mumm R, Dicke M, Bouwmeester HJ (2010) Natural variation in herbivore-induced volatiles in Arabidopsis thaliana. J Exp Bot 61:3041–3056

    Article  PubMed  CAS  Google Scholar 

  • Steeghs M, Bais HP, de Gouw J, Goldan P, Kuster W, Northway M, Fall R, Vivanco JM (2004) Proton-transfer-reaction mass spectrometry (PTR-MS) as a new tool for real time analysis of root-secreted volatile organic compounds (VOCs) in Arabidopsis thaliana. Plant Physiol 135:47–58

    Article  PubMed  CAS  Google Scholar 

  • Takabayashi J, Dicke M (1996) Plant–carnivore mutualism through herbivore-induced carnivore attractants. Trends Plant Sci 1:109–113

    Article  Google Scholar 

  • Takabayashi J, Dicke M, Posthumus M (1991) Variation in composition of predator-attracting allelochemicals emitted by herbivore-infested plants: relative influence of plant and herbivore. Chemoecology 2:1–6

    Article  CAS  Google Scholar 

  • Tscharntke T, Thiessen S, Dolch R, Boland W (2001) Herbivory, induced resistance and interplant signal transfer in Alnus glutinosa. Biochem Syst Ecol 29:1025–1047

    Article  CAS  Google Scholar 

  • Turlings TCJ, Tumlinson JH (1992) Systemic release of chemical signals by herbivore-injured corn. Proc Natl Acad Sci USA 89:8399–8402

    Article  PubMed  CAS  Google Scholar 

  • Turlings TCJ, Tumlinson JH, Lewis WJ (1990) Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps. Science 250:1251–1253

    Article  PubMed  CAS  Google Scholar 

  • Unsicker SB, Kunert G, Gershenzon J (2009) Protective perfumes: the role of vegetative volatiles in plant defense against herbivores. Curr Opin Plant Biol 12:479–485

    Article  PubMed  CAS  Google Scholar 

  • Viswanathan DV, Thaler JS (2004) Plant vascular architecture and within-plant spatial patterns in resource quality following herbivory. J Chem Ecol 30:531–543

    Article  PubMed  CAS  Google Scholar 

  • Wei J, Kang L (2011) Roles of (Z)-3-hexenol in plant–insect interactions. Plant Signal Behav 6:369–371

    Article  PubMed  CAS  Google Scholar 

  • Yi H-S, Heil M, Adame-Alvarez RM, Ballhorn DJ, Ryu CM (2009) Airborne induction and priming of plant defenses against a bacterial pathogen. Plant Physiol 151:2152–2161

    Article  PubMed  CAS  Google Scholar 

  • Zebelo SA, Matsui K, Ozawa R, Maffei ME (2012) Plasma membrane potential depolarization and cytosolic calcium flux are early events involved in tomato (Solanum lycopersicon) plant-to-plant communication. Plant Sci 196:93–100

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cesar R. Rodriguez-Saona .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rodriguez-Saona, C.R., Mescher, M.C., De Moraes, C.M. (2013). The Role of Volatiles in Plant–Plant Interactions. In: Baluška, F. (eds) Long-Distance Systemic Signaling and Communication in Plants. Signaling and Communication in Plants, vol 19. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36470-9_19

Download citation

Publish with us

Policies and ethics