Skip to main content

Calcium as a Trigger and Regulator of Systemic Alarms and Signals along the Phloem Pathway

  • Chapter
  • First Online:

Part of the book series: Signaling and Communication in Plants ((SIGCOMM,volume 19))

Abstract

This chapter explores how Ca2+ transmembrane movements of individual cells along the phloem pathway could collectively act as a basis for systemic signalling. Sieve elements play a pivotal role in this unifying, speculative concept of Ca2+-triggered signalling which comprises three principal assumptions: (1) Arrays of sieve elements provide a self-amplifying, least-resistance route for electrical potential waves as the inductors of various Ca2+ signatures in cells along the phloem pathway. (2) Ca2+-based systemic signalling occurs in three successive, partly overlapping waves that are distinct in timescale, nature, and site of origin. (3) The second and third waves of signalling require Ca2+-induced occlusion of the symplasmic connections in sieve tubes and adjoining tissues.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aki T, Shigyo M, Nakano R, Yoneyama T, Yanagisawa S (2008) Nano scale proteomics revealed the presence of regulatory proteins including three FT-like proteins in phloem and xylem saps from rice. Plant Cell Physiol 49:767–790

    Article  PubMed  CAS  Google Scholar 

  • Alarcon JJ, Malone M (1994) Substantial hydraulic signals are triggered by leaf-biting insects in tomato. J Exp Bot 45:953–957

    Article  Google Scholar 

  • Alosi MC, Melroy DL, Park RB (1988) The regulation of gelation of phloem exudate from Cucurbita fruit by dilution, glutathione, and glutathione reductase. Plant Physiol 86:1089–1094

    Article  PubMed  CAS  Google Scholar 

  • Anstead JA, Froehlich DR, Knoblauch M, Thompson GA (2012) Arabidopsis P-protein filament formation requires both AtSEO1 and AtSEO2. Plant Cell Physiol 53:1033–1042

    Article  PubMed  CAS  Google Scholar 

  • Barnes A, Bale J, Constantinidou C, Ashton P, Jones A, Pritchard J (2004) Determining protein identity from sieve element sap in Ricinus communis L. by quadrupole time of flight (Q-TOF) mass spectrometry. J Exp Bot 55:1473–1481

    Article  PubMed  CAS  Google Scholar 

  • Barratt DHP, Kolling K, Graf A, Pike M, Calder G, Findlay K, Zeeman SC, Smith AM (2011) Callose synthase GSL7 is necessary for normal phloem transport and inflorescence growth in Arabidopsis. Plant Physiol 155:328–341

    Article  PubMed  CAS  Google Scholar 

  • Bauer CS, Hoth S, Haga K, Phillipar K, Aoki N, Hedrich R (2000) Differential expression and regulation of K+ channels in the maize coleoptile: molecular and biophysical analysis of cells isolated from cortex and vasculature. Plant J 24:139–145

    Article  PubMed  CAS  Google Scholar 

  • Behnke HD, Sjolund RD (1990) Sieve elements Comparative structure, induction and development. Springer, Berlin

    Book  Google Scholar 

  • Bewell MA, Maathuis FJM, Allen GJ, Sanders D (1999) Calcium-induced calcium release mediated by voltage activated cation channel in vacuolar vesicles from red beet. FEBS Lett 458:41–44

    Article  PubMed  CAS  Google Scholar 

  • Boari F, Malone M (1993) Rapid and systemic hydraulic signals are induced by localized wounding in a wide range of species. J Exp Bot 44:741–746

    Article  Google Scholar 

  • Bolsover S, Silver RA (1991) Artifacts in calcium measurements: recognition and remedies. Trends Cell Biol 1:71–74

    Article  PubMed  CAS  Google Scholar 

  • Boursiac Y, Lee SM, Romanowsky S, Blank R, Sladek C, Chung WS, Harper JF (2010) Disruption of the vacuolar calcium-ATPases in Arabidopsis results in the activation of a salicylic acid-dependent programmed cell death pathway. Plant Physiol 154:1158–1171

    Article  PubMed  CAS  Google Scholar 

  • Brauer M, Zhong W-J, Schobert C, Sanders D, Komor E (1998) Free calcium ion concentration in the sieve-tube sap of Ricinus communis L. seedling. Planta 206:103–107

    Article  CAS  Google Scholar 

  • Brinckmann E, Lüttge U (1974) Lichtabhängige Membranpotentialschwankungen und deren interzelluläre Weiterleitung bei panaschierten Photosynthesemutanten von Oenothera. Planta 119:45–57

    Article  Google Scholar 

  • Buchen B, Hensel D, Sievers A (1983) Polarity in mechanoreceptor cells of trigger hairs of Dionaea muscipula Ellis. Planta 158:458–468

    Article  Google Scholar 

  • Carpaneto A, Ivashikina N, Levchenko V, Krol E, Jeworutzki E, Zhu J-K, Hedrich R (2007) Cold transiently activates calcium-permeable channels in Arabidopsis mesophyll cells. Plant Physiol 143:487–494

    Article  PubMed  CAS  Google Scholar 

  • Chaffey N, Barlow P (2002) Myosin, microtubules, and microfilaments: co-operation between cytoskeletal components during cambial cell division and vascular differentiation in trees. Planta 214:526–536

    Article  PubMed  CAS  Google Scholar 

  • Chen X-Y, Kim J-Y (2006) Transport of macromolecules through plasmodesmata and the phloem. Physiol Plant 126:560–571

    Article  CAS  Google Scholar 

  • Colombani A, Djerbi S, Bessueille L, Blomqvist K, Ohlsson A, Berglund T, Teeri TT, Bulone V (2004) In vitro synthesis of (1→3)-β-D-glucan (callose) and cellulose by detergent extracts of membranes from cell suspension cultures of hybrid aspen. Cellulose 11:313–327

    Article  CAS  Google Scholar 

  • Cosgrove DJ, Hedrich R (1991) Stretch-activated chloride, potassium, and calcium channels coexisting in plasma membranes of guard cells of Vicia faba L. Planta 186:143–153

    Article  PubMed  CAS  Google Scholar 

  • Davies E (1993) Intercellular and intracellular signals in plants and their transduction via the membrane-cytoskeleton interface. Semin Cell Biol 4:139–147

    Article  PubMed  CAS  Google Scholar 

  • Davies E (2004) New functions for electrical signals in plants. New Phytol 161:607–610

    Article  Google Scholar 

  • Davies E (2006) Electrical signals in plants: facts and hypotheses. In: Volkov AG (ed) Plant electrophysiology. Springer, Berlin, pp 407–422

    Chapter  Google Scholar 

  • Davies E, Stankovic B (2006) Electrical signals, the cytoskeleton and gene expression: a hypothesis on the coherence of the cellular responses to environmental insult. In: Baluska F, Mancuso S, Volkmann D (eds) Communication in plants. Springer, Berlin, pp 309–320

    Chapter  Google Scholar 

  • Davies E, Zawadzki T, Witters D (1991) Electrical activity and signal transmission in plants: how do plants know? In: Penel C, Grepin H (eds) Plant signalling, plasma membrane and change of state. University of Geneva, Geneva, pp 119–137

    Google Scholar 

  • Deeken R, Geiger D, Fromm J, Koroleva O, Ache P, Langenfeld-Heyser R, Sauer N, May ST, Hedrich R (2002) Loss of AKT2/3 potassium channel affects sugar loading into the phloem of Arabidopsis. Planta 216:334–344

    Article  PubMed  CAS  Google Scholar 

  • Demidchik V, Maathuis FJM (2007) Physiological roles of non-selective cation channels in plants: from salt stress to signaling and development. New Phytol 175:387–404

    Article  PubMed  CAS  Google Scholar 

  • Demidchik V, Bowen HC, Maathuis FJM, Shabala SN, Tester MA, White PJ, Davies JM (2002) Arabidopsis thaliana root nonselective cation channels mediate calcium uptake and are involved in growth. Plant J 32:799–808

    Article  PubMed  CAS  Google Scholar 

  • Dempsey DA, Klessig D (2012) SOS – too many signals for systemic acquired resistance. Trends Plant Sci 17:538–545

    Article  PubMed  CAS  Google Scholar 

  • Demuro A, Parker I (2006) Imaging single-channel calcium microdomains. Cell Calcium 40:413–422

    Article  PubMed  CAS  Google Scholar 

  • Dinant S, Lucas WJ (2013) Sieve elements: puzzling activities deciphered through proteomics studies. In: Thompson GA, van Bel AJE (eds) Phloem. Molecular cell biology, systemic communication, biotic interactions. Wiley, Cichester, pp 157–185

    Google Scholar 

  • Ding B, Itaya A (2007) Control of directional macromolecular trafficking across specific cellular boundaries: a key to integrative plant biology. J Integr Plant Biol 49:1227–1234

    Article  CAS  Google Scholar 

  • Ding JP, Pickard BG (1993) Modulation of mechanosensitive calcium-selective cation channels by temperature. Plant J 3:713–720

    Article  PubMed  CAS  Google Scholar 

  • Drøbak BK, Franklin-Tong VE, Staiger CJ (2004) The role of the actin cytoskeleton in plant cell signaling. New Phytol 163:13–30

    Article  CAS  Google Scholar 

  • Du L, Ali GS, Simons KA, Hou J, Yang T, Reddy AS, Poovaiah BW (2009) Ca2+/calmodulin regulates salicylic acid-mediated plant immunity. Nature 437:741–745

    Article  CAS  Google Scholar 

  • Dutta R, Robinson KR (2004) Identification and characterization of stretch-activated ion channels in pollen protoplasts. Plant Physiol 135:1398–1406

    Article  PubMed  CAS  Google Scholar 

  • Dziubinska H, Trebasz K, Zawadzki T (2001) Transmission route for action potentials and variation potentials in Helianthus annuus L. J Plant Physiol 158:1167–1172

    Article  CAS  Google Scholar 

  • Ehlers K, Kollmann R (2000) Synchronization of mitotic activity in protoplast-derived Solanum nigrum L. microcalluses is correlated with plasmodesmal connectivity. Planta 210:269–278

    Article  PubMed  CAS  Google Scholar 

  • Ehlers K, Binding H, Kollmann R (1999) The formation of symplasmic domains by plugging of plasmodesmata: a general event in plant morphogenesis. Protoplasma 209:181–192

    Article  Google Scholar 

  • Ehlers K, Knoblauch M, van Bel AJE (2000) Ultrastructural features of well-preserved and injured sieve elements: minute clamps keep the phloem transport conduits free for mass flow. Protoplasma 214:80–92

    Article  Google Scholar 

  • Engleman E (1965) Sieve elements of Impatiens sultanii. II Developmental aspects. Ann Bot 29:103–104

    Google Scholar 

  • Ernst AM, Jekat SB, Zielonka S, Müller B, Neumann U, Rüping B, Twyman RM, Krzyzanek V, Prüfer D, Noll G (2012) Sieve element occlusion (SEO) genes encode structural phloem proteins involved in wound sealing of phloem. Proc Natl Acad Sci USA 109:E1980–E1989

    Article  PubMed  CAS  Google Scholar 

  • Esau K (1969) The phloem. Encyclopedia of plant anatomy, vol 5. Bornträger, Berlin

    Google Scholar 

  • Evert RF (1990) Dicotyledons. In: Behnke HD, Sjolund RD (eds) Sieve elements. Comparative structure, induction and development. Springer, Berlin, pp 103–137

    Chapter  Google Scholar 

  • Felle HH, Zimmermann MR (2007) Systemic signalling in barley through action potentials. Planta 226:203–214

    Article  PubMed  CAS  Google Scholar 

  • Fields RD, Stevens-Graham B (2002) New insights into neuron-glia communication. Science 298:556–562

    Article  PubMed  CAS  Google Scholar 

  • Finkler A, Ashery-Padan R, Fromm H (2007) CAMTAs; calmodulin-binding transcription factors from plants to human. FEBS Lett 581:3893–3898

    Article  PubMed  CAS  Google Scholar 

  • Fisahn J, Herde O, Willmitzer L, Pena-Cortes H (2004) Analysis of the transient increase in cytosolic Ca2+ during the action potential of higher plants with high temporal resolution: requirement of Ca2+ transients for induction of jasmonic acid biosynthesis and PINII gene expression. Plant Cell Physiol 45:456–459

    Article  PubMed  CAS  Google Scholar 

  • Fisher DB, Cash-Clarke CE (2000) Sieve tube unloading and post-phloem transport of fluorescent tracers and proteins injected into sieve tubes via severed aphid stylets. Plant Physiol 123:125–137

    Article  PubMed  CAS  Google Scholar 

  • Fisher DB, Frame JM (1984) A guide to the use of exuding stylet technique in phloem physiology. Planta 161:385–393

    Article  Google Scholar 

  • Fisher DB, Wu K, Ku MSB (1992) Turnover of soluble proteins in wheat sieve tube. Plant Physiol 100:587–592

    Article  Google Scholar 

  • Fleurat-Lessard P, Bonnemain JL (1978) Structural and ultrastructural characteristics of the vascular apparatus of the sensitive plant Mimosa pudica L. Protoplasma 94:127–143

    Article  Google Scholar 

  • Fleurat-Lessard P, Roblin G (1982) Comparative histocytology of the petiole and the main pulvinus in Mimosa pudica L. Ann Bot 50:83–92

    Google Scholar 

  • Foster TM, Lough TJ, Emerson SJ, Lee RH, Bowman JL, Foster RLS, Lucas WJ (2002) A surveillance system regulates selective entry of RNA into the shoot apices. Plant Cell 14:1497–1508

    Article  PubMed  CAS  Google Scholar 

  • Fromm J (1991) Control of phloem unloading by action potentials in Mimosa. Plant Physiol 83:529–553

    Article  Google Scholar 

  • Fromm J, Bauer T (1994) Action potentials in maize sieve tubes change phloem translocation. J Exp Bot 45:463–469

    Article  Google Scholar 

  • Fromm J, Fei H (1998) Electrical signaling and gas exchange in maize plants of drying soil. Plant Sci 132:203–213

    Article  CAS  Google Scholar 

  • Fromm J, Lautner S (2006) Characteristics and functions of phloem-transmitted electrical signals in higher plants. In: Baluska F, Mancuso S, Volkmann D (eds) Communication in plants. Springer, Berlin, pp 321–332

    Chapter  Google Scholar 

  • Fromm J, Spanswick R (1993) Characteristics of action potential in willow (Salix viminalis L). J Exp Bot 44:1119–1125

    Article  Google Scholar 

  • Fromm J, Hajirezaei M, Wilke I (1995) The biochemical response of electrical signaling in the reproductive system of Hibiscus plants. Plant Physiol 109:375–384

    PubMed  CAS  Google Scholar 

  • Furch ACU, Hafke JB, Schulz A, van Bel AJE (2007) Ca2+-mediated remote control of reversible sieve tube occlusion in Vicia faba. J Exp Bot 58:2827–2838

    Article  PubMed  CAS  Google Scholar 

  • Furch ACU, Hafke JB, van Bel AJE (2008) Plant- and stimulus-specific variations in remote-controlled sieve-tube occlusion. Plant Signal Behav 3:858–861

    Article  PubMed  Google Scholar 

  • Furch ACU, van Bel AJE, Fricker MD, Felle HH, Fuchs M, Hafke JB (2009) Sieve element Ca2+ channels as relay stations between remote stimulus and sieve tube occlusion. Plant Cell 21:2118–2132

    Article  PubMed  CAS  Google Scholar 

  • Furch ACU, Zimmermann MR, Will T, Hafke JB, van Bel AJE (2010) Remote-controlled stop of mass flow by biphasic occlusion in Cucurbita maxima. J Exp Bot 61:3697–3708

    Article  PubMed  CAS  Google Scholar 

  • Gajdanowicz P, Michard E, Sandmann M, Rocha M, Correa LGG, Ramirez-Aguilar SJ, Gomez-Porras JL, Gonzales W, Thibaud JB, van Dongen JT, Dreyer I (2011) Potassium gradients serve as a mobile energy source in plant vascular tissues. Proc Natl Acad Sci USA 108:864–869

    Article  PubMed  CAS  Google Scholar 

  • Gaupels F, Furch ACU, Will T, Muir K, Kogel K-H, van Bel AJE (2008) Nitric oxide generation in Vicia faba phloem cells reveals them to be sensitive detectors as well as possible systemic transducers of stress signals. New Phytol 178:634–646

    Article  PubMed  CAS  Google Scholar 

  • Gaupels F, Sarioglu H, Beckman M, Hause B, Spannagl M, Draper J, Lindermayr C, Durner J (2012) Deciphering systemic wound response of the pumpkin extrafascicular phloem by metabolomics and stable-isotope protein labeling. Plant Physiol 160:2285–2299

    Article  PubMed  CAS  Google Scholar 

  • Gelli A, Blumwald E (1997) Hyperpolarization-activated Ca2+-permeable channels in the plasma membrane of tomato cells. J Membr Biol 155:35–45

    Article  PubMed  CAS  Google Scholar 

  • Giavalisco P, Kapitza K, Kolasa A, Buhtz A, Kehr J (2006) Towards the proteome of Brassica napus phloem sap. Proteomics 6:896–909

    Article  PubMed  CAS  Google Scholar 

  • Gilroy S, Read ND, Trewavas AJ (1990) Elevation of cytoplasmic calcium by caged calcium or caged inositol triphosphate initiates stomatal closure. Nature 346:769–771

    Article  PubMed  CAS  Google Scholar 

  • Golecki B, Schulz A, Thompson GA (1999) Translocation of structural P-proteins in the phloem. Plant Cell 11:127–140

    PubMed  CAS  Google Scholar 

  • Gong M, van der Luit AH, Knight MR, Trewavas AJ (1998) Heat-shock induced changes in intracellular Ca2+ level in tobacco seedlings in relation to thermotolerance. Plant Physiol 116:429–437

    Article  CAS  Google Scholar 

  • Guelette BS, Benning UF, Hoffmann-Benning S (2012) Identification of lipids and lipid-binding proteins in phloem exudates from Arabidopsis. J Exp Bot 63:3603–3616

    Article  PubMed  CAS  Google Scholar 

  • Hafke JB, van Amerongen JK, Kelling F, Furch ACU, Gaupels F, van Bel AJE (2005) Thermodynamic battle for photosynthate acquisition between sieve tubes and adjoining parenchyma in transport phloem. Plant Physiol 138:1527–1537

    Article  PubMed  CAS  Google Scholar 

  • Hafke JB, Furch ACU, Reitz MU, van Bel AJE (2007) Functional sieve element protoplasts. Plant Physiol 145:703–711

    Article  PubMed  CAS  Google Scholar 

  • Hafke JB, Furch ACU, Fricker MD, van Bel AJE (2009) Forisome dispersion in Vicia faba is triggered by Ca2+ hotspots created by concerted action of diverse Ca2+ channels in sieve elements. Plant Signal Behav 4:968–972

    Article  PubMed  CAS  Google Scholar 

  • Hamilton DWA, Hills A, Kohler B, Blatt MR (2000) Ca2+ channels at the plasma membrane of stomatal guard cells are activated by hyperpolarization and abscisic acid. Proc Natl Acad Sci USA 97:4967–4972

    Article  PubMed  CAS  Google Scholar 

  • Hedrich R (2012) Ion channels in plants. Physiol Rev 92:1777–1811

    Article  PubMed  CAS  Google Scholar 

  • Hepler PK, Palevitz BA, Lancelle SA, McCauley MM, Lichtscheidl L (1990) Cortical endoplasmic reticulum in plants. J Cell Sci 96:355–373

    CAS  Google Scholar 

  • Herde O, Fuss H, Pena-Cortes H, Fisahn J (1995) Proteinase inhibitor II gene expression induced by electrical stimulation and control of photosynthetic activity in tomato plants. Plant Cell Physiol 36:737–742

    CAS  Google Scholar 

  • Hlavackova V, Krchnak P, Naus J, Novak O, Spundova M, Strnad M (2006) Electrical and chemical signals involved in short-term systemic photosynthetic responses of tobacco plants to local burning. Planta 225:235–244

    Article  PubMed  CAS  Google Scholar 

  • Hodick D, Sievers A (1988) The action potential of Dionaea muscipula Ellis. Planta 174:8–18

    Article  CAS  Google Scholar 

  • Hodick D, Sievers A (1989) On the mechanism of trap closure of Venus flytrap (Dionaea muscipula Ellis). Planta 179:32–42

    Article  Google Scholar 

  • Holdaway-Clarke TL, Walker NA, Overall R (1996) Measurement of the electrical resistance of plasmodesmata and membranes of corn suspension cells. Planta 199:537–544

    Article  Google Scholar 

  • Holdaway-Clarke TL, Walker NA, Hepler PK, Overall RL (2000) Physiological elevations in cytoplasmic free calcium by cold or microinjection result in transient closure of higher plant plasmodesmata. Planta 210:329–335

    Article  PubMed  CAS  Google Scholar 

  • Homann U, Thiel G (1994) Cl and K+ channel currents during the action potential in Chara: simultaneous recording of membrane voltage and patch currents. J Membr Biol 141:297–309

    PubMed  CAS  Google Scholar 

  • Houwink AL (1935) The conduction of excitation in Mimosa pudica. Recueil des Travaux Botaniques Neerlandais 32:51–91

    Google Scholar 

  • Iijima T, Sibaoka T (1981) Action potentials in the trap-lobes of Aldrovanda vesiculosa. Plant Cell Physiol 22:1595–1601

    Google Scholar 

  • Iijima T, Sibaoka T (1982) Propagation of action potentials over the trap-lobes of Aldrovanda vesiculosa. Plant Cell Physiol 23:679–688

    Google Scholar 

  • Iijima T, Sibaoka T (1985) Membrane potentials in excitable cells of Aldrovanda vesiculosa trap-lobes. Plant Cell Physiol 26:1–13

    CAS  Google Scholar 

  • Imlau A, Truernit E, Sauer N (1999) Cell-to-cell and long-distance trafficking of the green fluorescent protein in the phloem and symplastic unloading of the protein into the sinks. Plant Cell 11:309–322

    PubMed  CAS  Google Scholar 

  • Itaya A, Liang G, Woo Y-M, Nelson RS, Ding B (2000) Nonspecific intercellular protein trafficking probed by green-fluorescent proteins in plants. Protoplasma 213:165–175

    Article  CAS  Google Scholar 

  • Jekat SB, Ernst A, Zielonka S, Noll G, Prüfer D (2012) Interactions among tobacco sieve element occlusion (SEO) proteins. Plant Signal Behav 7:1918–1920

    Article  CAS  Google Scholar 

  • Kaplan B, Davydov O, Knight H, Galon Y, Knight MR, Fluhr R, Fromm H (2006) Rapid transcriptome changes induced by cytosolic Ca2+ transients reveal ABRE-related sequences as Ca2+ responsive cis elements in Arabidopsis. Plant Cell 18:2733–2748

    Article  PubMed  CAS  Google Scholar 

  • Kauss H, Jeblick W (1991) Induced Ca2+ uptake and callose synthesis in suspension-cultured cells of Cataranthus roseus are decreased by the protein phosphatase inhibitor okadaic acid. Physiol Plant 81:309–312

    Article  CAS  Google Scholar 

  • Kehr J, Buhtz A (2013) Endogenous RNA constituents of the phloem and their possible roles in long-distance signalling. In: Thompson GA, van Bel AJE (eds) Phloem molecular cell biology, systemic communication, biotic interactions. Wiley, Cichester, pp 186–208

    Google Scholar 

  • Kempers R, Ammerlaan A, van Bel AJE (1998) Symplasmic constriction and ultrastructural features of the sieve element/companion cell complex in the transport phloem of apoplasmically and symplasmically loading species. Plant Physiol 116:271–278

    Article  CAS  Google Scholar 

  • Kiegle E, Gilliham M, Haseloff J, Tester M (2000) Hyperpolarisation activated calcium currents found only in cells from the elongation zone of Arabidopsis thaliana roots. Plant J 21:225–229

    Article  PubMed  CAS  Google Scholar 

  • Kinoshita T, Nishimura M, Shimazaki K (1995) Cytosolic concentration of Ca2+ regulates the plasma membrane H+-ATPase in guard cells of Fava bean. Plant Cell 7:1333–1342

    PubMed  CAS  Google Scholar 

  • Kishimoto U, Takeuchi Y, Ohkawa T, Kami-ike N (1985) A kinetic analysis of the electrogenic pump of Chara corallina. III. Pump acivity during action potential. J Membr Biol 86:27–36

    Article  CAS  Google Scholar 

  • Klüsener B, Weiler EW (1999) A calcium-selective channel from root-tip endomembranes of garden cress. Plant Physiol 119:1399–1405

    Article  PubMed  Google Scholar 

  • Klüsener B, Boheim G, Liß H, Engelberth J, Weiler EW (1995) Gadolinium-sensitive, voltage-dependent calcium release channels in the endoplasmic reticulum of a higher plant mechanoreceptor organ. EMBO J 14:2708–2714

    PubMed  Google Scholar 

  • Knight H, Trewavas AJ, Knight MR (1996) Cold calcium signaling in Arabidopsis involves two cellular pools and a change in calcium signature after acclimation. Plant Cell 8:489–503

    PubMed  CAS  Google Scholar 

  • Knoblauch M, Peters WS, Ehlers K, van Bel AJE (2001) Reversible calcium-regulated stopcocks in legume sieve tubes. Plant Cell 13:1221–1230

    PubMed  CAS  Google Scholar 

  • Knoblauch M, Noll G, Müller T, Prüfer D, Schneider-Hüther I, Scharner D, van Bel AJE, Peters WS (2003) ATP-independent contractile proteins from plants. Nat Mater 2:600–603

    Article  PubMed  CAS  Google Scholar 

  • Knoblauch M, Noll GA, Müller T, Prüfer D, Schneider-Hüther I, Scharner D, van Bel AJE, Peters WS (2005) Corrigendum. Nat Mater 4:353

    Article  CAS  Google Scholar 

  • Knoblauch M, Stubenrauch M, van Bel AJE, Peters WS (2012) Forisome performance in artificial sieve tubes. Plant Cell Environ 15:1419–1427

    Article  Google Scholar 

  • Krol E, Dziubinska H, Trebacz K (2003) Low-temperature-induced transmembrane potential changes in the liverwort Conocephalum conicum. Plant Cell Physiol 44:527–533

    Article  PubMed  CAS  Google Scholar 

  • Krol E, Dziubinska H, Trebacz K (2004) Low-temperature-induced transmembrane potential changes in mesophyll cells of Arabidopsis thaliana, Helianthus annuus and Vicia faba. Physiol Plant 120:265–270

    Article  PubMed  CAS  Google Scholar 

  • Kudla J, Batistic O, Hashimoto K (2010) Calcium signals: the lead currency of plant information processing. Plant Cell 22:541–563

    Article  PubMed  CAS  Google Scholar 

  • Lacombe B, Pilot G, Michard E, Gaymard F, Sentenac H, Thibaud J-B (2000) A shaker-like K+ channel with weak rectification is expressed in both source and sink phloem tissues of Arabidopsis. Plant Cell 12:837–851

    PubMed  CAS  Google Scholar 

  • Langhans M, Ratajczak R, Lützelschwab M, Michalke W, Wächter R, Fischer-Schliebs E, Ullrich CE (2001) Immunolocalization of plasma membrane H+-ATPase and tonoplast-type pyrophosphatase of the sieve element-companion cell complex in the stem of Ricinus communis L. Planta 213:11–19

    Article  PubMed  CAS  Google Scholar 

  • Leckie CP, McAinsh MR, Allen GJ, Sanders D, Hetherington AM (1998) Abscisic acid-induced stomatal closure mediated by cyclic ADP-ribose. Proc Natl Acad Sci USA 95:15837–15842

    Article  PubMed  CAS  Google Scholar 

  • Lemtiri-Chlieh F, MacRobbie EA, Webb AA, Manison NF, Brownlee C, Skepper JN, Chen J, Prestwich GD, Brearley CA (2003) Inositol hexakisphosphate mobilizes an endomembrane store of calcium in guard cells. Proc Natl Acad Sci USA 100:10091–10095

    Article  PubMed  CAS  Google Scholar 

  • Lin MK, Lee YJ, Lough BS, Phinney WJ, Lucas WJ (2009) Analysis of the pumpkin phloem proteome provides insights into angiosperm sieve tube function. Mol Cell Proteomics 8:343–356

    PubMed  CAS  Google Scholar 

  • Llinàs R, Sugimori M, Silver RB (1992) Microdomains of high calcium concentration in a presynaptic terminal. Science 256:677–679

    Article  PubMed  Google Scholar 

  • Llinàs R, Sugimori M, Silver RB (1995) The concept of calcium concentration microdomains in synaptic transmission. Neuropharmacology 34:1443–1451

    Article  PubMed  Google Scholar 

  • Lough T, Lucas WJ (2006) Integrative plant biology. Role of phloem long-distance macromolecular trafficking. Annu Rev Plant Biol 57:203–232

    Article  PubMed  CAS  Google Scholar 

  • Luan S, Kudla J, Rodriguez-Concepcion M, Yalovsky S, Gruissem W (2002) Calmodulins and calcineurin B-like proteins: calcium sensors for specific signal response coupling in plants. Plant Cell 14:389–400

    Google Scholar 

  • Lucas WJ, Yoo B-C, Kragler F (2001) RNA as a long-distance information macromolecule in plants. Nat Rev Mol Cell Biol 2:849–857

    Article  PubMed  CAS  Google Scholar 

  • Lucas WJ, Ham B-K, Kim J-Y (2009) Plasmodesmata – bridging the gap between neighbouring plant cells. Trends Cell Biol 19:495–503

    Article  PubMed  CAS  Google Scholar 

  • Lunevsky VZ, Zherelova OM, Vostrikov IY, Berestovsky GN (1983) Excitation of Characeae cell membranes as a result of activation of calcium and chloride channels. J Membr Biol 72:43–58

    Article  Google Scholar 

  • Malho R, Moutinho A, van der Luit A, Trewavas AJ (1998) Spatial characteristics of calcium signalling: the calcium wave as a basic unit in plant cell calcium signalling. Philos Trans R Soc Lond B Biol Sci 353:1463–1473

    Article  CAS  Google Scholar 

  • Malone M (1996) Rapid, long-distance signal transmission in higher plants. Adv Bot Res 22:163–228

    Article  CAS  Google Scholar 

  • Malone M, Stankovic B (1991) Surface potentials and hydraulic signals in wheat leaves following localized wounding by heat. Plant Cell Environ 14:431–436

    Article  Google Scholar 

  • Mancuso S (1999) Hydraulic and electrical transmission of wound-induced signals in Vitis vinifera. Aust J Plant Physiol 26:55–61

    Article  Google Scholar 

  • Marten I, Hoth S, Deeken R, Ketchum KA, Hoshi T, Hedrich R (1999) AKT3, a phloem-localised K+ channel is blocked by protons. Proc Natl Acad Sci USA 96:7581–7586

    Article  PubMed  CAS  Google Scholar 

  • Mazars C, Thion L, Thuleau P, Graziana A, Knight MR, Moreau M, Ranjeva R (1997) Organization of cytoskeleton controls the changes in cytosolic calcium of cold-shocked Nicotiana plumbaginifolia protoplasts. Cell Calcium 22:413–420

    Article  PubMed  CAS  Google Scholar 

  • McAinsh MR, Pittman JK (2009) Shaping the calcium signature. New Phytol 181:275–294

    Article  PubMed  CAS  Google Scholar 

  • Michard E, Lima PT, Borges F, Silva A, Portes MT, Carvalho JE, Gilliham M, Liu L-H, Obermeyer G, Feijo JA (2011) Glutamate receptor-like genes form Ca2+ channels in pollen tubes and are regulated by pistil D-serin. Science 332:434–437

    Article  PubMed  CAS  Google Scholar 

  • Minorsky PV, Spanswick RM (1989) Electrophysiological evidence for a role for calcium in temperature sensing by roots of cucumber seedlings. Plant Cell Environ 12:137–143

    Article  CAS  Google Scholar 

  • Monroy AF, Dhindsa RS (1995) Low temperature signal transduction: induction of cold acclimation-specific genes of alfalfa by calcium at 25°C. Plant Cell 7:321–331

    PubMed  CAS  Google Scholar 

  • Moyen C, Johannes E (1996) Systemin transiently depolarizes the tomato mesophyll cell membrane and antagonizes fusicoccin induced extracellular acidification of mesophyll tissue. Plant Cell Environ 19:464–470

    Article  CAS  Google Scholar 

  • Mummert H, Gradmann D (1991) Action potentials in Acetabularia: measurement and simulation of voltage-gated fluxes. J Membr Biol 124:265–273

    Article  PubMed  CAS  Google Scholar 

  • Munemasa S, Hossain MA, NakamuraY MIC, Nurata Y (2011) The Arabidopsis calcium-dependent protein kinase, CPK6, functions as a positive regulator of methyl jasmonate signalling in guard cells. Plant Physiol 155:553–561

    Article  PubMed  CAS  Google Scholar 

  • Nakamura S, Hayashi H, Mori S, Chino M (1993) Protein phosphorylation in the sieve tubes of rice plants. Plant Cell Physiol 34:927–933

    CAS  Google Scholar 

  • Narvaez-Vazquez J, Ryan CA (2004) The cellular localization of prosystemin: a functional role for phloem parenchyma in systemic wound signalling. Planta 218:360–369

    Article  CAS  Google Scholar 

  • Navazio L, Bewell MA, Siddiqua A, Dickinson GD, Galione A, Sanders D (2000) Calcium release from the endoplasmic reticulum of higher plants is elicited by the NADP metabolite nicotinic acid adenine dinucleotide phosphate. Proc Natl Acad Sci USA 97:8693–8698

    Article  PubMed  CAS  Google Scholar 

  • Ng CKY, McAinsh MR (2003) Encoding specificity in plant calcium signalling: hot-spotting the ups and downs and waves. Ann Bot 92:477–485

    Article  PubMed  CAS  Google Scholar 

  • Okihara K, Ohkawa T, Tsutsui I, Kasai M (1991) A Ca2+- and voltage-dependent Cl–sensitive anion channel in the Chara plasmalemma: a patch clamp study. Plant Cell Physiol 32:593–601

    Google Scholar 

  • Opritov VA, Pyatygin SS, Vodeneev VA (2002) Direct coupling of action potential generation in cells of a higher plant (Cucurbita pepo) with the operation of an electrogenic pump. Russ J Plant Physiol 49:142–147

    Article  CAS  Google Scholar 

  • Overall R, Gunning BES (1982) Intercellular communication in Azolla roots. I Electrical coupling. Protoplasma 111:151–160

    Article  Google Scholar 

  • Palevitz BA, Hepler PK (1985) Changes in dye coupling of stomatal cells of Allium and Commelina demonstrated by microinjection of Lucifer yellow. Planta 164:473–479

    Article  Google Scholar 

  • Parthasaraty MV, Pesacreta TC (1980) Microfilaments in plant vascular cells. Can J Bot 58:807–815

    Article  Google Scholar 

  • Patrick JW, Offler CE (1996) Post-sieve element transport of photoassimilates in sink regions. J Exp Bot 47:1165–1177

    Article  PubMed  CAS  Google Scholar 

  • Pélissier HC, Peters WS, Collier R, van Bel AJE, Knoblauch M (2008) GFP tagging of sieve element occlusion (SEO) proteins in green fluorescent forisomes. Plant Cell Physiol 49:1699–1710

    Article  PubMed  CAS  Google Scholar 

  • Pena Cortes H, Fishan J, Willmitzer L (1995) Signals involved in wound-induced proteinase inhibitor II gene expression in tomato and potato plants. Proc Natl Acad Sci USA 92:4106–4113

    Article  PubMed  CAS  Google Scholar 

  • Peters WS, van Bel AJE, Knoblauch M (2006) The geometry of the forisome-sieve element-sieve plate complex in the phloem of Vicia faba L. leaflets. J Exp Bot 57:3091–3098

    Article  PubMed  CAS  Google Scholar 

  • Peters WS, Haffer D, Hanakam CB, van Bel AJE, Knoblauch M (2010) Legume phylogeny and the evolution of a unique contractile apparatus that regulates phloem transport. Am J Bot 97:797–808

    Article  PubMed  Google Scholar 

  • Pickard B (1973) Action potentials in plants. Bot Rev 39:172–201

    Article  Google Scholar 

  • Pickard WF, Minchin PEH (1990) The transient inhibition of phloem translocation in Phaseolus vulgaris by abrupt temperature drops, vibration, and electric shock. J Exp Bot 41:1361–1369

    Article  Google Scholar 

  • Pittman JK, Hirschi KD (2003) Don’t shoot the (second) messenger: endomembrane transporters and binding proteins modulate cytosolic Ca2+ levels. Curr Opin Plant Biol 6:257–262

    Article  PubMed  CAS  Google Scholar 

  • Plieth C (1999) Temperature sensing by plants: calcium-permeable channels as primary sensors – a model. J Membr Biol 172:121–127

    Article  PubMed  CAS  Google Scholar 

  • Plieth C (2001) Plant calcium signaling and monitoring: pros and cons and recent experimental approaches. Protoplasma 218:1–23

    Article  PubMed  CAS  Google Scholar 

  • Plieth C, Hansen U-P, Knight H, Knight MR (1999) Temperature sensing by plants: the primary characteristics of signal perception and calcium response. Plant J 18:491–497

    Article  PubMed  CAS  Google Scholar 

  • Pyatygin SS, Opritov VA, Vodeneev VA (2008) Signaling role of action potential in higher plants. Russ J Plant Physiol 55:285–291

    Article  CAS  Google Scholar 

  • Radford JE, Vesk M, Overall RL (1998) Callose deposition at plasmodesmata. Protoplasma 201:30–37

    Article  CAS  Google Scholar 

  • Retivin VG, Opritov VA, Fedulina SB (1997) Generation of action potentials induces preadaptation of Cucurbita pepo L. stem tissues to freezing injury. Russ J Plant Physiol 44:432–442

    CAS  Google Scholar 

  • Rhodes JD, Thain JF, Wildon DC (1996) The pathway for systemic electrical signal conduction in the wounded tomato plant. Planta 200:50–57

    Article  CAS  Google Scholar 

  • Ricca U (1916) Soluzione d’un problema di fisiologia: la propagazione di stimulo nella Mimosa. Nuovo G Bot Ital 23:51–170

    Google Scholar 

  • Roblin G (1985) Analysis of the variation potential induced by wounding in plants. Plant Cell Physiol 26:455–461

    Google Scholar 

  • Roblin G, Bonnemain J-L (1985) Propagation in Vicia faba stem of a potential variation by wounding. Plant Cell Physiol 26:1273–1283

    Google Scholar 

  • Ruan Y-L, Llewellyn DJ, Furbank RT (2001) The control of single-celled cotton fiber elongation by developmentally reversible gating of plasmodesmata and coordinate expression of sucrose and K+ transport genes and expansin. Plant Cell 13:47–60

    PubMed  CAS  Google Scholar 

  • Rüping B, Ernst AM, Jekat SB, Nordzieke S, Reineke AR, Müller B, Bornberg-Bauer E, Prüfer D, Noll GA (2010) Molecular and phylogenetic characterization of the sieve element occlusion gene family in Fabaceae and non-Fabaceae plants. BMC Plant Biol 10:219

    Article  PubMed  CAS  Google Scholar 

  • Samejima M, Sibaoka T (1983) Identification of the excitable cells in the petiole of Mimosa pudica by intracellular injection of procion yellow. Plant Cell Physiol 24:33–39

    Google Scholar 

  • Sanders D, Pelloux J, Brownlee C, Harper JF (2002) Calcium at the crossroads of signaling. Plant Cell 14:401–417

    Google Scholar 

  • Schulz A (1999) Physiological control of plasmodesmatal gating. In: van Bel AJE, van Kesteren WJP (eds) Plasmodesmata. Structure, function, role in cell communication. Springer, Berlin, pp 173–204

    Google Scholar 

  • Schwan S, Menzel M, Fritzsche M, Heilmann A, Spohn U (2009) Micromechanical measurements of P-protein aggregates (forisomes) from Vicia faba plants. Biophys Biochem 139:99–105

    CAS  Google Scholar 

  • Sibaoka T (1966) Action potentials in plant organs. Symp Soc Exp Biol 20:49–74

    PubMed  CAS  Google Scholar 

  • Sibaoka T (1969) Physiology of rapid movements in plants. Annu Rev Plant Physiol 20:165–184

    Article  CAS  Google Scholar 

  • Sibaoka T (1991) Rapid plant movements triggered by action potentials. J Plant Res 104:73–95

    Google Scholar 

  • Sinyukin AM, Britikov EA (1967) Action potentials in the reproductive system of plants. Nature 215:1278–1280

    Article  Google Scholar 

  • Sivaguru M, Fujiwara T, Samaj J, Baluska F, Yang Z, Osawa H, Maeda T, Mori T, Volkmann D, Matsumoto M (2000) Aluminium-induced 1→3-β-D-glucan inhibits cell-to-cell trafficking of molecules through plasmodesmata. A new mechanism of aluminium toxicity in plants. Plant Physiol 124:991–1005

    Article  PubMed  CAS  Google Scholar 

  • Sivaguru M, Yamamoto Y, Rengel Z, Ahn S-J, Matsumoto M (2005) Early events responsible for aluminium toxicity symptoms in suspension-cultured tobacco cells. New Phytol 165:99–109

    Article  PubMed  CAS  Google Scholar 

  • Sjölund RD (1997) The phloem sieve element: a river runs through it. Plant Cell 9:1137–1146

    Article  PubMed  Google Scholar 

  • Sjolund RD, Shih CY (1983) Freeze-fracture analysis of phloem structure in plant tissue cultures. I The sieve element reticulum. J Ultrastr Res 82:111–121

    Article  CAS  Google Scholar 

  • Stahlberg R, Cosgrove DJ (1992) Rapid alterations in growth rate and electrical potentials upon stem excision in pea seedlings. Planta 187:523–531

    Article  PubMed  CAS  Google Scholar 

  • Stahlberg R, Cosgrove DJ (1996) Induction and ionic basis of slow wave potentials in seedlings of Pisum sativum L. Planta 200:416–425

    Article  PubMed  CAS  Google Scholar 

  • Stahlberg R, Cosgrove DJ (1997) The propagation of slow wave potentials in pea epicotyls. Plant Physiol 113:209–217

    PubMed  CAS  Google Scholar 

  • Stahlberg R, Cleland RE, Van Volkenburgh E (2005) Decrement and amplification of slow wave potentials during their propagation in Helianthus annuus L. shoots. Planta 220:550–558

    Article  PubMed  CAS  Google Scholar 

  • Stahlberg R, Cleland RE, Van Volkenburgh E (2006) Slow wave potentials – a propagating electrical signal unique to higher plants. In: Baluska F, Mancuso S, Volkmann D (eds) Communication in plants. Springer, Berlin, pp 291–308

    Chapter  Google Scholar 

  • Stankovic B, Davies E (1997) Intercellular communication in plants: electrical stimulation of proteinase inhibitor gene expression in tomato. Planta 202:402–406

    Article  CAS  Google Scholar 

  • Stankovic B, Zawadzki T, Davies E (1997) Characterization of the variation potential in sunflower. Plant Physiol 115:1083–1088

    PubMed  CAS  Google Scholar 

  • Stankovic B, Witters DL, Zawadzki T, Davies E (1998) Action and variation potentials in sunflower: An analysis of their relationship and distinguishing characteristics. Physiol Plant 103:51–58

    Article  CAS  Google Scholar 

  • Thain JF, Gubb IR, Wildon DC (1995) Depolarization of tomato leaf cells by oligogalacturonide elicitors. Plant Cell Environ 18:211–214

    Article  CAS  Google Scholar 

  • Thiel G, Homann U, Plieth C (1997) Ion channel activity during the action potential in Chara: a new insight with new techniques. J Exp Bot 48:609–622

    Article  PubMed  CAS  Google Scholar 

  • Thion L, Mazars C, Nacry P, Bouchez D, Moreau M, Ranjeva R, Thuleau P (1998) Plasma membrane depolarization-activated calcium channels stimulated by microtubule-depolymerizing drugs in wild-type Arabidopsis thaliana protoplasts, display constitutively large activities and a longer half-life in ton 2 mutant cells affected in the organization of the cortical microtubules. Plant J 13:603–610

    Article  PubMed  CAS  Google Scholar 

  • Thorpe MR, Furch ACU, Minchin PEH, Föller J, van Bel AJE, Hafke JB (2010) Rapid cooling triggers forisome dispersion just before phloem transport stops. Plant Cell Environ 33:259–271

    Article  PubMed  CAS  Google Scholar 

  • Thorsch J, Esau K (1981) Nuclear degeneration and the association of endoplasmic reticulum with the nuclear envelope and microtubules in maturing sieve elements of Gossypium hirsutum. J Ultrastr Res 74:195–204

    Article  CAS  Google Scholar 

  • Thuleau P, Moreau M, Schroeder JI, Ranjeva R (1994) Recent advances in the regulation of plant calcium channels: evidence for regulation by G-proteins, the cytoskeleton and second messengers. Curr Opin Plant Biol 1:424–427

    Article  Google Scholar 

  • Trebacz K, Simonis W, Schönknecht G (1994) Cytoplasmic Ca2+, K+, Cl and NO3 activities in the liverwort Conocephalum conicum L. at rest and during action potentials. Plant Physiol 106:1073–1084

    PubMed  CAS  Google Scholar 

  • Trebacz K, Dziubinska H, Krol E (2006) Electrical signals in long-distance communication in plants. In: Baluska F, Mancuso S, Volkmann D (eds) Communication in plants. Springer, Berlin, pp 277–290

    Chapter  Google Scholar 

  • Trewavas A (1999) Le calcium, c’est la vie: Calcium makes waves. Plant Physiol 120:1–6

    Article  PubMed  CAS  Google Scholar 

  • Trewavas AJ, Malho R (1997) Signal perception and transduction: the origin of the phenotype. Plant Cell 9:1181–1195

    Article  PubMed  CAS  Google Scholar 

  • Tsien RW, Tsien RY (1990) Calcium channels, stores and oscillations. Annu Rev Cell Biol 6:715–760

    Article  PubMed  CAS  Google Scholar 

  • Tsien RW, Hess P, Mc Cleskey EW, Rosenberg RL (1987) Calcium channels: mechanisms of selectivity, permeation, and block. Annu Rev Biophys Biophys Chem 16:265–790

    Article  PubMed  CAS  Google Scholar 

  • Tsutsui I, Ohkawa T, Nagai R, Kishimoto U (1986) Inhibition of Cl channel activation in Chara corallina membrane by lanthanum ion. Plant Cell Physiol 27:1197–1200

    CAS  Google Scholar 

  • Tucker EB (1990) Calcium-loaded 1,2-bis(2-aminophenoxy)ethane-N, N, N′, N′-tetraacetic acid blocks cell-to-cell diffusion of carboxyfluorescein in staminal hairs of Setcreasea purpurea. Planta 182:34–38

    Article  CAS  Google Scholar 

  • Tuteja N, Umate P, van Bel AJE (2010) Forisomes: calcium-powered protein complexes with potential as ‘smart’ biomaterials. Trends Biotechnol 28:102–110

    Article  PubMed  CAS  Google Scholar 

  • van Bel AJE (2003) The phloem, a miracle of ingenuity. Plant Cell Environ 26:125–149

    Article  Google Scholar 

  • van Bel AJE, Ehlers K (2005) Electrical signalling via plasmodesmata. In: Oparka KJ (ed) Plasmodesmata. Blackwell, Oxford, pp 263–278

    Google Scholar 

  • van Bel AJE, Hafke JB (2005) Physiochemical determinants of phloem transport. In: Holbrook NM, Zwieniecki M (eds) Vascular transport in plants. Elsevier, Burlington, pp 19–44

    Chapter  Google Scholar 

  • van Bel AJE, Kempers R (1997) The pore/plasmodesm unit; key element in the interplay between sieve element and companion cell. Progr Bot 58:278–291

    Article  Google Scholar 

  • van Bel AJE, Knoblauch M (2000) Sieve element and companion cell: the story of the comatose patient and the hyperactive nurse. Aust J Plant Physiol 27:477–487

    Google Scholar 

  • van Bel AJE, van Rijen HVM (1994) Microelectrode-recorded development of the symplasmic autonomy of the sieve element/companion cell complex in the stem phloem of Lupinus luteus L. Planta 192:165–175

    Article  Google Scholar 

  • van Bel AJE, Knoblauch M, Furch ACU, Hafke JB (2011a) (Questions)n on phloem biology. 1. Electropotential waves, Ca2+ fluxes and cellular cascades along the propagation pathway. Plant Sci 181:210–218

    Article  PubMed  CAS  Google Scholar 

  • van Bel AJE, Knoblauch M, Furch ACU, Hafke JB, Patrick JW (2011b) (Questions)n on phloem biology. 2. Mass flow, molecular hopping, distribution patterns and macromolecular signalling. Plant Sci 181:325–330

    Article  PubMed  CAS  Google Scholar 

  • van Sambeek JW, Pickard BG (1976) Mediation of rapid electrical, metabolic, transpirational, and photosynthetic changes by factors released from wounds. I. Variation potentials and putative action potentials. Can J Bot 54:2642–2650

    Article  Google Scholar 

  • van Sambeek JW, Pickard BG, Ulbright CE (1976) Mediation of rapid electrical, metabolic, transpirational, and photosynthetic changes by factors released from wounds. II. Mediation of the variation potential by Ricca’s factor. Can J Bot 54:2651–2661

    Article  Google Scholar 

  • Volk G, Franceschi VR (2000) Localization of a calcium-channel-like protein in the sieve element plasma membrane. Aust J Plant Physiol 27:779–786

    CAS  Google Scholar 

  • Walz C, Giavalisco P, Schad M, Juenger M, Klose J, Kehr J (2004) Proteomics of cucurbit phloem exudates reveals a network of defence proteins. Phytochemistry 65:1795–1804

    Article  PubMed  CAS  Google Scholar 

  • Wang YF, Fan L-M, Zhang W-Z, Zhang W, Wu W-H (2004) Ca2+- permeable channels in the plasma membrane of Arabidopsis pollen are regulated by actin microfilaments. Plant Physiol 136:3892–3904

    Article  PubMed  CAS  Google Scholar 

  • Wayne R (1994) The excitability of plant cells: with special emphasis on Characean internodal cells. Bot Rev 60:265–367

    Article  PubMed  CAS  Google Scholar 

  • Webb AAR, McAinsh MR, Taylor JE, Hetherington AM (1996) Calcium ions as intracellular second messengers in higher plants. Adv Bot Res 22:45–96

    Article  CAS  Google Scholar 

  • White PJ (2004) Calcium signals in root cells: the roles of plasma membrane calcium channels. Biologia 59:77–83

    CAS  Google Scholar 

  • White PJ (2009) Depolarization-activated calcium channels shape the calcium signatures induced by low-temperature stress. New Phytol 183:6–8

    Article  PubMed  CAS  Google Scholar 

  • White PJ, Broadley MR (2003) Calcium in plants. Ann Bot 92:487–511

    Article  PubMed  CAS  Google Scholar 

  • White PJ, Ridout MS (1999) An energy-barrier model for the permeation of monovalent and divalent cations through the maxi cation channel in the plasma membrane of rye roots. J Membr Biol 168:63–75

    Article  PubMed  CAS  Google Scholar 

  • Wildon DC, Thain JF, Minchin PEH, Gubb IR, Reilly AJ, Skipper YD, Doherty HM, O’Donnell PJ, Bowles DJ (1992) Electrical signalling and systemic proteinase inhibitor induction in the wounded plant. Nature 360:62–65

    Article  CAS  Google Scholar 

  • Will T, Tjallingii WF, Thönnessen A, van Bel AJE (2007) Molecular sabotage of plant defense by aphids. Proc Natl Acad Sci USA 104:10536–10541

    Article  PubMed  CAS  Google Scholar 

  • Will T, Kornemann SR, Furch ACU, Tjallingii WF, van Bel AJE (2009) Aphid saliva counteracts sieve-tube occlusion: a universal phenomenon? J Exp Biol 22:3305–3312

    Article  CAS  Google Scholar 

  • Williams SE, Pickard BG (1972a) Properties of action potentials in Drosera tentacles. Planta 103:222–240

    Article  Google Scholar 

  • Williams SE, Pickard BG (1972b) Receptor potentials and action potentials in Drosera tentacles. Planta 103:193–221

    Article  Google Scholar 

  • Williams SE, Pickard BG (1974) Connections and barriers between cells of Drosera tentacles in relation to their electrophysiology. Planta 116:1–6

    Article  Google Scholar 

  • Williams SE, Spanswick RM (1976) Propagation of the neuroid action potential of the carnivorous plant Drosera. J Comp Physiol 108:211–223

    Article  Google Scholar 

  • Xie B, Wang X, Zhu M, Zhang Z, Hong Z (2011) CalS7 encodes a callose synthase responsible for callose deposition in the phloem. Plant J 65:1–14

    Article  PubMed  CAS  Google Scholar 

  • Yoo BC, Lee JY, Lucas WJ (2002) Analysis of the complexity of protein kinases within the phloem sieve tube system. J Biol Chem 277:15325–15332

    Article  PubMed  CAS  Google Scholar 

  • Zawadzki T (1980) Action potentials in Lupinus angustifolius L. shoots. V. Spread of excitation in the stem, leaves, and root. J Exp Bot 31:1371–1377

    Article  Google Scholar 

  • Zawadzki T, Davies E, Dziubinska H, Trebacz K (1991) Characteristics of action potentials in Helianthus annuus. Physiol Plant 83:601–604

    Article  Google Scholar 

  • Zhang W, Fan L, Wu W (2007) Osmo-sensitive and stretch-activated calcium-permeable channels in Vicia faba guard cells are regulated by actin dynamics. Plant Physiol 143:1140–1151

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann MR, Felle HH (2009) Dissection of heat-induced systemic signals: superiority of ion fluxes to voltage changes in substomatal cavities. Planta 229:539–547

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann MR, Maischak H, Mithöfer A, Boland W, Felle HH (2009) System potentials, a novel electrical long-distance apoplastic signal in plants, induced by wounding. Plant Physiol 149:593–600

    Article  CAS  Google Scholar 

  • Zimmermann MR, Hafke JB, van Bel AJE, Furch ACU (2013) The interaction of xylem and phloem during exudation and wound occlusion in Cucurbita maxima. Plant Cell Environ 36:337–347

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aart J. E. van Bel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

van Bel, A.J.E., Hafke, J.B. (2013). Calcium as a Trigger and Regulator of Systemic Alarms and Signals along the Phloem Pathway. In: Baluška, F. (eds) Long-Distance Systemic Signaling and Communication in Plants. Signaling and Communication in Plants, vol 19. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36470-9_18

Download citation

Publish with us

Policies and ethics