Calcium as a Trigger and Regulator of Systemic Alarms and Signals along the Phloem Pathway

  • Aart J. E. van Bel
  • Jens B. Hafke
Part of the Signaling and Communication in Plants book series (SIGCOMM, volume 19)


This chapter explores how Ca2+ transmembrane movements of individual cells along the phloem pathway could collectively act as a basis for systemic signalling. Sieve elements play a pivotal role in this unifying, speculative concept of Ca2+-triggered signalling which comprises three principal assumptions: (1) Arrays of sieve elements provide a self-amplifying, least-resistance route for electrical potential waves as the inductors of various Ca2+ signatures in cells along the phloem pathway. (2) Ca2+-based systemic signalling occurs in three successive, partly overlapping waves that are distinct in timescale, nature, and site of origin. (3) The second and third waves of signalling require Ca2+-induced occlusion of the symplasmic connections in sieve tubes and adjoining tissues.


Action potentials Ca2+ compartmentation Ca2+ hotspots Ca2+-permeable channels Electrical potential waves Phloem Sieve tubes Systemic signalling Variation potentials 


  1. Aki T, Shigyo M, Nakano R, Yoneyama T, Yanagisawa S (2008) Nano scale proteomics revealed the presence of regulatory proteins including three FT-like proteins in phloem and xylem saps from rice. Plant Cell Physiol 49:767–790PubMedCrossRefGoogle Scholar
  2. Alarcon JJ, Malone M (1994) Substantial hydraulic signals are triggered by leaf-biting insects in tomato. J Exp Bot 45:953–957CrossRefGoogle Scholar
  3. Alosi MC, Melroy DL, Park RB (1988) The regulation of gelation of phloem exudate from Cucurbita fruit by dilution, glutathione, and glutathione reductase. Plant Physiol 86:1089–1094PubMedCrossRefGoogle Scholar
  4. Anstead JA, Froehlich DR, Knoblauch M, Thompson GA (2012) Arabidopsis P-protein filament formation requires both AtSEO1 and AtSEO2. Plant Cell Physiol 53:1033–1042PubMedCrossRefGoogle Scholar
  5. Barnes A, Bale J, Constantinidou C, Ashton P, Jones A, Pritchard J (2004) Determining protein identity from sieve element sap in Ricinus communis L. by quadrupole time of flight (Q-TOF) mass spectrometry. J Exp Bot 55:1473–1481PubMedCrossRefGoogle Scholar
  6. Barratt DHP, Kolling K, Graf A, Pike M, Calder G, Findlay K, Zeeman SC, Smith AM (2011) Callose synthase GSL7 is necessary for normal phloem transport and inflorescence growth in Arabidopsis. Plant Physiol 155:328–341PubMedCrossRefGoogle Scholar
  7. Bauer CS, Hoth S, Haga K, Phillipar K, Aoki N, Hedrich R (2000) Differential expression and regulation of K+ channels in the maize coleoptile: molecular and biophysical analysis of cells isolated from cortex and vasculature. Plant J 24:139–145PubMedCrossRefGoogle Scholar
  8. Behnke HD, Sjolund RD (1990) Sieve elements Comparative structure, induction and development. Springer, BerlinCrossRefGoogle Scholar
  9. Bewell MA, Maathuis FJM, Allen GJ, Sanders D (1999) Calcium-induced calcium release mediated by voltage activated cation channel in vacuolar vesicles from red beet. FEBS Lett 458:41–44PubMedCrossRefGoogle Scholar
  10. Boari F, Malone M (1993) Rapid and systemic hydraulic signals are induced by localized wounding in a wide range of species. J Exp Bot 44:741–746CrossRefGoogle Scholar
  11. Bolsover S, Silver RA (1991) Artifacts in calcium measurements: recognition and remedies. Trends Cell Biol 1:71–74PubMedCrossRefGoogle Scholar
  12. Boursiac Y, Lee SM, Romanowsky S, Blank R, Sladek C, Chung WS, Harper JF (2010) Disruption of the vacuolar calcium-ATPases in Arabidopsis results in the activation of a salicylic acid-dependent programmed cell death pathway. Plant Physiol 154:1158–1171PubMedCrossRefGoogle Scholar
  13. Brauer M, Zhong W-J, Schobert C, Sanders D, Komor E (1998) Free calcium ion concentration in the sieve-tube sap of Ricinus communis L. seedling. Planta 206:103–107CrossRefGoogle Scholar
  14. Brinckmann E, Lüttge U (1974) Lichtabhängige Membranpotentialschwankungen und deren interzelluläre Weiterleitung bei panaschierten Photosynthesemutanten von Oenothera. Planta 119:45–57CrossRefGoogle Scholar
  15. Buchen B, Hensel D, Sievers A (1983) Polarity in mechanoreceptor cells of trigger hairs of Dionaea muscipula Ellis. Planta 158:458–468CrossRefGoogle Scholar
  16. Carpaneto A, Ivashikina N, Levchenko V, Krol E, Jeworutzki E, Zhu J-K, Hedrich R (2007) Cold transiently activates calcium-permeable channels in Arabidopsis mesophyll cells. Plant Physiol 143:487–494PubMedCrossRefGoogle Scholar
  17. Chaffey N, Barlow P (2002) Myosin, microtubules, and microfilaments: co-operation between cytoskeletal components during cambial cell division and vascular differentiation in trees. Planta 214:526–536PubMedCrossRefGoogle Scholar
  18. Chen X-Y, Kim J-Y (2006) Transport of macromolecules through plasmodesmata and the phloem. Physiol Plant 126:560–571CrossRefGoogle Scholar
  19. Colombani A, Djerbi S, Bessueille L, Blomqvist K, Ohlsson A, Berglund T, Teeri TT, Bulone V (2004) In vitro synthesis of (1→3)-β-D-glucan (callose) and cellulose by detergent extracts of membranes from cell suspension cultures of hybrid aspen. Cellulose 11:313–327CrossRefGoogle Scholar
  20. Cosgrove DJ, Hedrich R (1991) Stretch-activated chloride, potassium, and calcium channels coexisting in plasma membranes of guard cells of Vicia faba L. Planta 186:143–153PubMedCrossRefGoogle Scholar
  21. Davies E (1993) Intercellular and intracellular signals in plants and their transduction via the membrane-cytoskeleton interface. Semin Cell Biol 4:139–147PubMedCrossRefGoogle Scholar
  22. Davies E (2004) New functions for electrical signals in plants. New Phytol 161:607–610CrossRefGoogle Scholar
  23. Davies E (2006) Electrical signals in plants: facts and hypotheses. In: Volkov AG (ed) Plant electrophysiology. Springer, Berlin, pp 407–422CrossRefGoogle Scholar
  24. Davies E, Stankovic B (2006) Electrical signals, the cytoskeleton and gene expression: a hypothesis on the coherence of the cellular responses to environmental insult. In: Baluska F, Mancuso S, Volkmann D (eds) Communication in plants. Springer, Berlin, pp 309–320CrossRefGoogle Scholar
  25. Davies E, Zawadzki T, Witters D (1991) Electrical activity and signal transmission in plants: how do plants know? In: Penel C, Grepin H (eds) Plant signalling, plasma membrane and change of state. University of Geneva, Geneva, pp 119–137Google Scholar
  26. Deeken R, Geiger D, Fromm J, Koroleva O, Ache P, Langenfeld-Heyser R, Sauer N, May ST, Hedrich R (2002) Loss of AKT2/3 potassium channel affects sugar loading into the phloem of Arabidopsis. Planta 216:334–344PubMedCrossRefGoogle Scholar
  27. Demidchik V, Maathuis FJM (2007) Physiological roles of non-selective cation channels in plants: from salt stress to signaling and development. New Phytol 175:387–404PubMedCrossRefGoogle Scholar
  28. Demidchik V, Bowen HC, Maathuis FJM, Shabala SN, Tester MA, White PJ, Davies JM (2002) Arabidopsis thaliana root nonselective cation channels mediate calcium uptake and are involved in growth. Plant J 32:799–808PubMedCrossRefGoogle Scholar
  29. Dempsey DA, Klessig D (2012) SOS – too many signals for systemic acquired resistance. Trends Plant Sci 17:538–545PubMedCrossRefGoogle Scholar
  30. Demuro A, Parker I (2006) Imaging single-channel calcium microdomains. Cell Calcium 40:413–422PubMedCrossRefGoogle Scholar
  31. Dinant S, Lucas WJ (2013) Sieve elements: puzzling activities deciphered through proteomics studies. In: Thompson GA, van Bel AJE (eds) Phloem. Molecular cell biology, systemic communication, biotic interactions. Wiley, Cichester, pp 157–185Google Scholar
  32. Ding B, Itaya A (2007) Control of directional macromolecular trafficking across specific cellular boundaries: a key to integrative plant biology. J Integr Plant Biol 49:1227–1234CrossRefGoogle Scholar
  33. Ding JP, Pickard BG (1993) Modulation of mechanosensitive calcium-selective cation channels by temperature. Plant J 3:713–720PubMedCrossRefGoogle Scholar
  34. Drøbak BK, Franklin-Tong VE, Staiger CJ (2004) The role of the actin cytoskeleton in plant cell signaling. New Phytol 163:13–30CrossRefGoogle Scholar
  35. Du L, Ali GS, Simons KA, Hou J, Yang T, Reddy AS, Poovaiah BW (2009) Ca2+/calmodulin regulates salicylic acid-mediated plant immunity. Nature 437:741–745CrossRefGoogle Scholar
  36. Dutta R, Robinson KR (2004) Identification and characterization of stretch-activated ion channels in pollen protoplasts. Plant Physiol 135:1398–1406PubMedCrossRefGoogle Scholar
  37. Dziubinska H, Trebasz K, Zawadzki T (2001) Transmission route for action potentials and variation potentials in Helianthus annuus L. J Plant Physiol 158:1167–1172CrossRefGoogle Scholar
  38. Ehlers K, Kollmann R (2000) Synchronization of mitotic activity in protoplast-derived Solanum nigrum L. microcalluses is correlated with plasmodesmal connectivity. Planta 210:269–278PubMedCrossRefGoogle Scholar
  39. Ehlers K, Binding H, Kollmann R (1999) The formation of symplasmic domains by plugging of plasmodesmata: a general event in plant morphogenesis. Protoplasma 209:181–192CrossRefGoogle Scholar
  40. Ehlers K, Knoblauch M, van Bel AJE (2000) Ultrastructural features of well-preserved and injured sieve elements: minute clamps keep the phloem transport conduits free for mass flow. Protoplasma 214:80–92CrossRefGoogle Scholar
  41. Engleman E (1965) Sieve elements of Impatiens sultanii. II Developmental aspects. Ann Bot 29:103–104Google Scholar
  42. Ernst AM, Jekat SB, Zielonka S, Müller B, Neumann U, Rüping B, Twyman RM, Krzyzanek V, Prüfer D, Noll G (2012) Sieve element occlusion (SEO) genes encode structural phloem proteins involved in wound sealing of phloem. Proc Natl Acad Sci USA 109:E1980–E1989PubMedCrossRefGoogle Scholar
  43. Esau K (1969) The phloem. Encyclopedia of plant anatomy, vol 5. Bornträger, BerlinGoogle Scholar
  44. Evert RF (1990) Dicotyledons. In: Behnke HD, Sjolund RD (eds) Sieve elements. Comparative structure, induction and development. Springer, Berlin, pp 103–137CrossRefGoogle Scholar
  45. Felle HH, Zimmermann MR (2007) Systemic signalling in barley through action potentials. Planta 226:203–214PubMedCrossRefGoogle Scholar
  46. Fields RD, Stevens-Graham B (2002) New insights into neuron-glia communication. Science 298:556–562PubMedCrossRefGoogle Scholar
  47. Finkler A, Ashery-Padan R, Fromm H (2007) CAMTAs; calmodulin-binding transcription factors from plants to human. FEBS Lett 581:3893–3898PubMedCrossRefGoogle Scholar
  48. Fisahn J, Herde O, Willmitzer L, Pena-Cortes H (2004) Analysis of the transient increase in cytosolic Ca2+ during the action potential of higher plants with high temporal resolution: requirement of Ca2+ transients for induction of jasmonic acid biosynthesis and PINII gene expression. Plant Cell Physiol 45:456–459PubMedCrossRefGoogle Scholar
  49. Fisher DB, Cash-Clarke CE (2000) Sieve tube unloading and post-phloem transport of fluorescent tracers and proteins injected into sieve tubes via severed aphid stylets. Plant Physiol 123:125–137PubMedCrossRefGoogle Scholar
  50. Fisher DB, Frame JM (1984) A guide to the use of exuding stylet technique in phloem physiology. Planta 161:385–393CrossRefGoogle Scholar
  51. Fisher DB, Wu K, Ku MSB (1992) Turnover of soluble proteins in wheat sieve tube. Plant Physiol 100:587–592CrossRefGoogle Scholar
  52. Fleurat-Lessard P, Bonnemain JL (1978) Structural and ultrastructural characteristics of the vascular apparatus of the sensitive plant Mimosa pudica L. Protoplasma 94:127–143CrossRefGoogle Scholar
  53. Fleurat-Lessard P, Roblin G (1982) Comparative histocytology of the petiole and the main pulvinus in Mimosa pudica L. Ann Bot 50:83–92Google Scholar
  54. Foster TM, Lough TJ, Emerson SJ, Lee RH, Bowman JL, Foster RLS, Lucas WJ (2002) A surveillance system regulates selective entry of RNA into the shoot apices. Plant Cell 14:1497–1508PubMedCrossRefGoogle Scholar
  55. Fromm J (1991) Control of phloem unloading by action potentials in Mimosa. Plant Physiol 83:529–553CrossRefGoogle Scholar
  56. Fromm J, Bauer T (1994) Action potentials in maize sieve tubes change phloem translocation. J Exp Bot 45:463–469CrossRefGoogle Scholar
  57. Fromm J, Fei H (1998) Electrical signaling and gas exchange in maize plants of drying soil. Plant Sci 132:203–213CrossRefGoogle Scholar
  58. Fromm J, Lautner S (2006) Characteristics and functions of phloem-transmitted electrical signals in higher plants. In: Baluska F, Mancuso S, Volkmann D (eds) Communication in plants. Springer, Berlin, pp 321–332CrossRefGoogle Scholar
  59. Fromm J, Spanswick R (1993) Characteristics of action potential in willow (Salix viminalis L). J Exp Bot 44:1119–1125CrossRefGoogle Scholar
  60. Fromm J, Hajirezaei M, Wilke I (1995) The biochemical response of electrical signaling in the reproductive system of Hibiscus plants. Plant Physiol 109:375–384PubMedGoogle Scholar
  61. Furch ACU, Hafke JB, Schulz A, van Bel AJE (2007) Ca2+-mediated remote control of reversible sieve tube occlusion in Vicia faba. J Exp Bot 58:2827–2838PubMedCrossRefGoogle Scholar
  62. Furch ACU, Hafke JB, van Bel AJE (2008) Plant- and stimulus-specific variations in remote-controlled sieve-tube occlusion. Plant Signal Behav 3:858–861PubMedCrossRefGoogle Scholar
  63. Furch ACU, van Bel AJE, Fricker MD, Felle HH, Fuchs M, Hafke JB (2009) Sieve element Ca2+ channels as relay stations between remote stimulus and sieve tube occlusion. Plant Cell 21:2118–2132PubMedCrossRefGoogle Scholar
  64. Furch ACU, Zimmermann MR, Will T, Hafke JB, van Bel AJE (2010) Remote-controlled stop of mass flow by biphasic occlusion in Cucurbita maxima. J Exp Bot 61:3697–3708PubMedCrossRefGoogle Scholar
  65. Gajdanowicz P, Michard E, Sandmann M, Rocha M, Correa LGG, Ramirez-Aguilar SJ, Gomez-Porras JL, Gonzales W, Thibaud JB, van Dongen JT, Dreyer I (2011) Potassium gradients serve as a mobile energy source in plant vascular tissues. Proc Natl Acad Sci USA 108:864–869PubMedCrossRefGoogle Scholar
  66. Gaupels F, Furch ACU, Will T, Muir K, Kogel K-H, van Bel AJE (2008) Nitric oxide generation in Vicia faba phloem cells reveals them to be sensitive detectors as well as possible systemic transducers of stress signals. New Phytol 178:634–646PubMedCrossRefGoogle Scholar
  67. Gaupels F, Sarioglu H, Beckman M, Hause B, Spannagl M, Draper J, Lindermayr C, Durner J (2012) Deciphering systemic wound response of the pumpkin extrafascicular phloem by metabolomics and stable-isotope protein labeling. Plant Physiol 160:2285–2299PubMedCrossRefGoogle Scholar
  68. Gelli A, Blumwald E (1997) Hyperpolarization-activated Ca2+-permeable channels in the plasma membrane of tomato cells. J Membr Biol 155:35–45PubMedCrossRefGoogle Scholar
  69. Giavalisco P, Kapitza K, Kolasa A, Buhtz A, Kehr J (2006) Towards the proteome of Brassica napus phloem sap. Proteomics 6:896–909PubMedCrossRefGoogle Scholar
  70. Gilroy S, Read ND, Trewavas AJ (1990) Elevation of cytoplasmic calcium by caged calcium or caged inositol triphosphate initiates stomatal closure. Nature 346:769–771PubMedCrossRefGoogle Scholar
  71. Golecki B, Schulz A, Thompson GA (1999) Translocation of structural P-proteins in the phloem. Plant Cell 11:127–140PubMedGoogle Scholar
  72. Gong M, van der Luit AH, Knight MR, Trewavas AJ (1998) Heat-shock induced changes in intracellular Ca2+ level in tobacco seedlings in relation to thermotolerance. Plant Physiol 116:429–437CrossRefGoogle Scholar
  73. Guelette BS, Benning UF, Hoffmann-Benning S (2012) Identification of lipids and lipid-binding proteins in phloem exudates from Arabidopsis. J Exp Bot 63:3603–3616PubMedCrossRefGoogle Scholar
  74. Hafke JB, van Amerongen JK, Kelling F, Furch ACU, Gaupels F, van Bel AJE (2005) Thermodynamic battle for photosynthate acquisition between sieve tubes and adjoining parenchyma in transport phloem. Plant Physiol 138:1527–1537PubMedCrossRefGoogle Scholar
  75. Hafke JB, Furch ACU, Reitz MU, van Bel AJE (2007) Functional sieve element protoplasts. Plant Physiol 145:703–711PubMedCrossRefGoogle Scholar
  76. Hafke JB, Furch ACU, Fricker MD, van Bel AJE (2009) Forisome dispersion in Vicia faba is triggered by Ca2+ hotspots created by concerted action of diverse Ca2+ channels in sieve elements. Plant Signal Behav 4:968–972PubMedCrossRefGoogle Scholar
  77. Hamilton DWA, Hills A, Kohler B, Blatt MR (2000) Ca2+ channels at the plasma membrane of stomatal guard cells are activated by hyperpolarization and abscisic acid. Proc Natl Acad Sci USA 97:4967–4972PubMedCrossRefGoogle Scholar
  78. Hedrich R (2012) Ion channels in plants. Physiol Rev 92:1777–1811PubMedCrossRefGoogle Scholar
  79. Hepler PK, Palevitz BA, Lancelle SA, McCauley MM, Lichtscheidl L (1990) Cortical endoplasmic reticulum in plants. J Cell Sci 96:355–373Google Scholar
  80. Herde O, Fuss H, Pena-Cortes H, Fisahn J (1995) Proteinase inhibitor II gene expression induced by electrical stimulation and control of photosynthetic activity in tomato plants. Plant Cell Physiol 36:737–742Google Scholar
  81. Hlavackova V, Krchnak P, Naus J, Novak O, Spundova M, Strnad M (2006) Electrical and chemical signals involved in short-term systemic photosynthetic responses of tobacco plants to local burning. Planta 225:235–244PubMedCrossRefGoogle Scholar
  82. Hodick D, Sievers A (1988) The action potential of Dionaea muscipula Ellis. Planta 174:8–18CrossRefGoogle Scholar
  83. Hodick D, Sievers A (1989) On the mechanism of trap closure of Venus flytrap (Dionaea muscipula Ellis). Planta 179:32–42CrossRefGoogle Scholar
  84. Holdaway-Clarke TL, Walker NA, Overall R (1996) Measurement of the electrical resistance of plasmodesmata and membranes of corn suspension cells. Planta 199:537–544CrossRefGoogle Scholar
  85. Holdaway-Clarke TL, Walker NA, Hepler PK, Overall RL (2000) Physiological elevations in cytoplasmic free calcium by cold or microinjection result in transient closure of higher plant plasmodesmata. Planta 210:329–335PubMedCrossRefGoogle Scholar
  86. Homann U, Thiel G (1994) Cl and K+ channel currents during the action potential in Chara: simultaneous recording of membrane voltage and patch currents. J Membr Biol 141:297–309PubMedGoogle Scholar
  87. Houwink AL (1935) The conduction of excitation in Mimosa pudica. Recueil des Travaux Botaniques Neerlandais 32:51–91Google Scholar
  88. Iijima T, Sibaoka T (1981) Action potentials in the trap-lobes of Aldrovanda vesiculosa. Plant Cell Physiol 22:1595–1601Google Scholar
  89. Iijima T, Sibaoka T (1982) Propagation of action potentials over the trap-lobes of Aldrovanda vesiculosa. Plant Cell Physiol 23:679–688Google Scholar
  90. Iijima T, Sibaoka T (1985) Membrane potentials in excitable cells of Aldrovanda vesiculosa trap-lobes. Plant Cell Physiol 26:1–13Google Scholar
  91. Imlau A, Truernit E, Sauer N (1999) Cell-to-cell and long-distance trafficking of the green fluorescent protein in the phloem and symplastic unloading of the protein into the sinks. Plant Cell 11:309–322PubMedGoogle Scholar
  92. Itaya A, Liang G, Woo Y-M, Nelson RS, Ding B (2000) Nonspecific intercellular protein trafficking probed by green-fluorescent proteins in plants. Protoplasma 213:165–175CrossRefGoogle Scholar
  93. Jekat SB, Ernst A, Zielonka S, Noll G, Prüfer D (2012) Interactions among tobacco sieve element occlusion (SEO) proteins. Plant Signal Behav 7:1918–1920CrossRefGoogle Scholar
  94. Kaplan B, Davydov O, Knight H, Galon Y, Knight MR, Fluhr R, Fromm H (2006) Rapid transcriptome changes induced by cytosolic Ca2+ transients reveal ABRE-related sequences as Ca2+ responsive cis elements in Arabidopsis. Plant Cell 18:2733–2748PubMedCrossRefGoogle Scholar
  95. Kauss H, Jeblick W (1991) Induced Ca2+ uptake and callose synthesis in suspension-cultured cells of Cataranthus roseus are decreased by the protein phosphatase inhibitor okadaic acid. Physiol Plant 81:309–312CrossRefGoogle Scholar
  96. Kehr J, Buhtz A (2013) Endogenous RNA constituents of the phloem and their possible roles in long-distance signalling. In: Thompson GA, van Bel AJE (eds) Phloem molecular cell biology, systemic communication, biotic interactions. Wiley, Cichester, pp 186–208Google Scholar
  97. Kempers R, Ammerlaan A, van Bel AJE (1998) Symplasmic constriction and ultrastructural features of the sieve element/companion cell complex in the transport phloem of apoplasmically and symplasmically loading species. Plant Physiol 116:271–278CrossRefGoogle Scholar
  98. Kiegle E, Gilliham M, Haseloff J, Tester M (2000) Hyperpolarisation activated calcium currents found only in cells from the elongation zone of Arabidopsis thaliana roots. Plant J 21:225–229PubMedCrossRefGoogle Scholar
  99. Kinoshita T, Nishimura M, Shimazaki K (1995) Cytosolic concentration of Ca2+ regulates the plasma membrane H+-ATPase in guard cells of Fava bean. Plant Cell 7:1333–1342PubMedGoogle Scholar
  100. Kishimoto U, Takeuchi Y, Ohkawa T, Kami-ike N (1985) A kinetic analysis of the electrogenic pump of Chara corallina. III. Pump acivity during action potential. J Membr Biol 86:27–36CrossRefGoogle Scholar
  101. Klüsener B, Weiler EW (1999) A calcium-selective channel from root-tip endomembranes of garden cress. Plant Physiol 119:1399–1405PubMedCrossRefGoogle Scholar
  102. Klüsener B, Boheim G, Liß H, Engelberth J, Weiler EW (1995) Gadolinium-sensitive, voltage-dependent calcium release channels in the endoplasmic reticulum of a higher plant mechanoreceptor organ. EMBO J 14:2708–2714PubMedGoogle Scholar
  103. Knight H, Trewavas AJ, Knight MR (1996) Cold calcium signaling in Arabidopsis involves two cellular pools and a change in calcium signature after acclimation. Plant Cell 8:489–503PubMedGoogle Scholar
  104. Knoblauch M, Peters WS, Ehlers K, van Bel AJE (2001) Reversible calcium-regulated stopcocks in legume sieve tubes. Plant Cell 13:1221–1230PubMedGoogle Scholar
  105. Knoblauch M, Noll G, Müller T, Prüfer D, Schneider-Hüther I, Scharner D, van Bel AJE, Peters WS (2003) ATP-independent contractile proteins from plants. Nat Mater 2:600–603PubMedCrossRefGoogle Scholar
  106. Knoblauch M, Noll GA, Müller T, Prüfer D, Schneider-Hüther I, Scharner D, van Bel AJE, Peters WS (2005) Corrigendum. Nat Mater 4:353CrossRefGoogle Scholar
  107. Knoblauch M, Stubenrauch M, van Bel AJE, Peters WS (2012) Forisome performance in artificial sieve tubes. Plant Cell Environ 15:1419–1427CrossRefGoogle Scholar
  108. Krol E, Dziubinska H, Trebacz K (2003) Low-temperature-induced transmembrane potential changes in the liverwort Conocephalum conicum. Plant Cell Physiol 44:527–533PubMedCrossRefGoogle Scholar
  109. Krol E, Dziubinska H, Trebacz K (2004) Low-temperature-induced transmembrane potential changes in mesophyll cells of Arabidopsis thaliana, Helianthus annuus and Vicia faba. Physiol Plant 120:265–270PubMedCrossRefGoogle Scholar
  110. Kudla J, Batistic O, Hashimoto K (2010) Calcium signals: the lead currency of plant information processing. Plant Cell 22:541–563PubMedCrossRefGoogle Scholar
  111. Lacombe B, Pilot G, Michard E, Gaymard F, Sentenac H, Thibaud J-B (2000) A shaker-like K+ channel with weak rectification is expressed in both source and sink phloem tissues of Arabidopsis. Plant Cell 12:837–851PubMedGoogle Scholar
  112. Langhans M, Ratajczak R, Lützelschwab M, Michalke W, Wächter R, Fischer-Schliebs E, Ullrich CE (2001) Immunolocalization of plasma membrane H+-ATPase and tonoplast-type pyrophosphatase of the sieve element-companion cell complex in the stem of Ricinus communis L. Planta 213:11–19PubMedCrossRefGoogle Scholar
  113. Leckie CP, McAinsh MR, Allen GJ, Sanders D, Hetherington AM (1998) Abscisic acid-induced stomatal closure mediated by cyclic ADP-ribose. Proc Natl Acad Sci USA 95:15837–15842PubMedCrossRefGoogle Scholar
  114. Lemtiri-Chlieh F, MacRobbie EA, Webb AA, Manison NF, Brownlee C, Skepper JN, Chen J, Prestwich GD, Brearley CA (2003) Inositol hexakisphosphate mobilizes an endomembrane store of calcium in guard cells. Proc Natl Acad Sci USA 100:10091–10095PubMedCrossRefGoogle Scholar
  115. Lin MK, Lee YJ, Lough BS, Phinney WJ, Lucas WJ (2009) Analysis of the pumpkin phloem proteome provides insights into angiosperm sieve tube function. Mol Cell Proteomics 8:343–356PubMedGoogle Scholar
  116. Llinàs R, Sugimori M, Silver RB (1992) Microdomains of high calcium concentration in a presynaptic terminal. Science 256:677–679PubMedCrossRefGoogle Scholar
  117. Llinàs R, Sugimori M, Silver RB (1995) The concept of calcium concentration microdomains in synaptic transmission. Neuropharmacology 34:1443–1451PubMedCrossRefGoogle Scholar
  118. Lough T, Lucas WJ (2006) Integrative plant biology. Role of phloem long-distance macromolecular trafficking. Annu Rev Plant Biol 57:203–232PubMedCrossRefGoogle Scholar
  119. Luan S, Kudla J, Rodriguez-Concepcion M, Yalovsky S, Gruissem W (2002) Calmodulins and calcineurin B-like proteins: calcium sensors for specific signal response coupling in plants. Plant Cell 14:389–400Google Scholar
  120. Lucas WJ, Yoo B-C, Kragler F (2001) RNA as a long-distance information macromolecule in plants. Nat Rev Mol Cell Biol 2:849–857PubMedCrossRefGoogle Scholar
  121. Lucas WJ, Ham B-K, Kim J-Y (2009) Plasmodesmata – bridging the gap between neighbouring plant cells. Trends Cell Biol 19:495–503PubMedCrossRefGoogle Scholar
  122. Lunevsky VZ, Zherelova OM, Vostrikov IY, Berestovsky GN (1983) Excitation of Characeae cell membranes as a result of activation of calcium and chloride channels. J Membr Biol 72:43–58CrossRefGoogle Scholar
  123. Malho R, Moutinho A, van der Luit A, Trewavas AJ (1998) Spatial characteristics of calcium signalling: the calcium wave as a basic unit in plant cell calcium signalling. Philos Trans R Soc Lond B Biol Sci 353:1463–1473CrossRefGoogle Scholar
  124. Malone M (1996) Rapid, long-distance signal transmission in higher plants. Adv Bot Res 22:163–228CrossRefGoogle Scholar
  125. Malone M, Stankovic B (1991) Surface potentials and hydraulic signals in wheat leaves following localized wounding by heat. Plant Cell Environ 14:431–436CrossRefGoogle Scholar
  126. Mancuso S (1999) Hydraulic and electrical transmission of wound-induced signals in Vitis vinifera. Aust J Plant Physiol 26:55–61CrossRefGoogle Scholar
  127. Marten I, Hoth S, Deeken R, Ketchum KA, Hoshi T, Hedrich R (1999) AKT3, a phloem-localised K+ channel is blocked by protons. Proc Natl Acad Sci USA 96:7581–7586PubMedCrossRefGoogle Scholar
  128. Mazars C, Thion L, Thuleau P, Graziana A, Knight MR, Moreau M, Ranjeva R (1997) Organization of cytoskeleton controls the changes in cytosolic calcium of cold-shocked Nicotiana plumbaginifolia protoplasts. Cell Calcium 22:413–420PubMedCrossRefGoogle Scholar
  129. McAinsh MR, Pittman JK (2009) Shaping the calcium signature. New Phytol 181:275–294PubMedCrossRefGoogle Scholar
  130. Michard E, Lima PT, Borges F, Silva A, Portes MT, Carvalho JE, Gilliham M, Liu L-H, Obermeyer G, Feijo JA (2011) Glutamate receptor-like genes form Ca2+ channels in pollen tubes and are regulated by pistil D-serin. Science 332:434–437PubMedCrossRefGoogle Scholar
  131. Minorsky PV, Spanswick RM (1989) Electrophysiological evidence for a role for calcium in temperature sensing by roots of cucumber seedlings. Plant Cell Environ 12:137–143CrossRefGoogle Scholar
  132. Monroy AF, Dhindsa RS (1995) Low temperature signal transduction: induction of cold acclimation-specific genes of alfalfa by calcium at 25°C. Plant Cell 7:321–331PubMedGoogle Scholar
  133. Moyen C, Johannes E (1996) Systemin transiently depolarizes the tomato mesophyll cell membrane and antagonizes fusicoccin induced extracellular acidification of mesophyll tissue. Plant Cell Environ 19:464–470CrossRefGoogle Scholar
  134. Mummert H, Gradmann D (1991) Action potentials in Acetabularia: measurement and simulation of voltage-gated fluxes. J Membr Biol 124:265–273PubMedCrossRefGoogle Scholar
  135. Munemasa S, Hossain MA, NakamuraY MIC, Nurata Y (2011) The Arabidopsis calcium-dependent protein kinase, CPK6, functions as a positive regulator of methyl jasmonate signalling in guard cells. Plant Physiol 155:553–561PubMedCrossRefGoogle Scholar
  136. Nakamura S, Hayashi H, Mori S, Chino M (1993) Protein phosphorylation in the sieve tubes of rice plants. Plant Cell Physiol 34:927–933Google Scholar
  137. Narvaez-Vazquez J, Ryan CA (2004) The cellular localization of prosystemin: a functional role for phloem parenchyma in systemic wound signalling. Planta 218:360–369CrossRefGoogle Scholar
  138. Navazio L, Bewell MA, Siddiqua A, Dickinson GD, Galione A, Sanders D (2000) Calcium release from the endoplasmic reticulum of higher plants is elicited by the NADP metabolite nicotinic acid adenine dinucleotide phosphate. Proc Natl Acad Sci USA 97:8693–8698PubMedCrossRefGoogle Scholar
  139. Ng CKY, McAinsh MR (2003) Encoding specificity in plant calcium signalling: hot-spotting the ups and downs and waves. Ann Bot 92:477–485PubMedCrossRefGoogle Scholar
  140. Okihara K, Ohkawa T, Tsutsui I, Kasai M (1991) A Ca2+- and voltage-dependent Cl–sensitive anion channel in the Chara plasmalemma: a patch clamp study. Plant Cell Physiol 32:593–601Google Scholar
  141. Opritov VA, Pyatygin SS, Vodeneev VA (2002) Direct coupling of action potential generation in cells of a higher plant (Cucurbita pepo) with the operation of an electrogenic pump. Russ J Plant Physiol 49:142–147CrossRefGoogle Scholar
  142. Overall R, Gunning BES (1982) Intercellular communication in Azolla roots. I Electrical coupling. Protoplasma 111:151–160CrossRefGoogle Scholar
  143. Palevitz BA, Hepler PK (1985) Changes in dye coupling of stomatal cells of Allium and Commelina demonstrated by microinjection of Lucifer yellow. Planta 164:473–479CrossRefGoogle Scholar
  144. Parthasaraty MV, Pesacreta TC (1980) Microfilaments in plant vascular cells. Can J Bot 58:807–815CrossRefGoogle Scholar
  145. Patrick JW, Offler CE (1996) Post-sieve element transport of photoassimilates in sink regions. J Exp Bot 47:1165–1177PubMedCrossRefGoogle Scholar
  146. Pélissier HC, Peters WS, Collier R, van Bel AJE, Knoblauch M (2008) GFP tagging of sieve element occlusion (SEO) proteins in green fluorescent forisomes. Plant Cell Physiol 49:1699–1710PubMedCrossRefGoogle Scholar
  147. Pena Cortes H, Fishan J, Willmitzer L (1995) Signals involved in wound-induced proteinase inhibitor II gene expression in tomato and potato plants. Proc Natl Acad Sci USA 92:4106–4113PubMedCrossRefGoogle Scholar
  148. Peters WS, van Bel AJE, Knoblauch M (2006) The geometry of the forisome-sieve element-sieve plate complex in the phloem of Vicia faba L. leaflets. J Exp Bot 57:3091–3098PubMedCrossRefGoogle Scholar
  149. Peters WS, Haffer D, Hanakam CB, van Bel AJE, Knoblauch M (2010) Legume phylogeny and the evolution of a unique contractile apparatus that regulates phloem transport. Am J Bot 97:797–808PubMedCrossRefGoogle Scholar
  150. Pickard B (1973) Action potentials in plants. Bot Rev 39:172–201CrossRefGoogle Scholar
  151. Pickard WF, Minchin PEH (1990) The transient inhibition of phloem translocation in Phaseolus vulgaris by abrupt temperature drops, vibration, and electric shock. J Exp Bot 41:1361–1369CrossRefGoogle Scholar
  152. Pittman JK, Hirschi KD (2003) Don’t shoot the (second) messenger: endomembrane transporters and binding proteins modulate cytosolic Ca2+ levels. Curr Opin Plant Biol 6:257–262PubMedCrossRefGoogle Scholar
  153. Plieth C (1999) Temperature sensing by plants: calcium-permeable channels as primary sensors – a model. J Membr Biol 172:121–127PubMedCrossRefGoogle Scholar
  154. Plieth C (2001) Plant calcium signaling and monitoring: pros and cons and recent experimental approaches. Protoplasma 218:1–23PubMedCrossRefGoogle Scholar
  155. Plieth C, Hansen U-P, Knight H, Knight MR (1999) Temperature sensing by plants: the primary characteristics of signal perception and calcium response. Plant J 18:491–497PubMedCrossRefGoogle Scholar
  156. Pyatygin SS, Opritov VA, Vodeneev VA (2008) Signaling role of action potential in higher plants. Russ J Plant Physiol 55:285–291CrossRefGoogle Scholar
  157. Radford JE, Vesk M, Overall RL (1998) Callose deposition at plasmodesmata. Protoplasma 201:30–37CrossRefGoogle Scholar
  158. Retivin VG, Opritov VA, Fedulina SB (1997) Generation of action potentials induces preadaptation of Cucurbita pepo L. stem tissues to freezing injury. Russ J Plant Physiol 44:432–442Google Scholar
  159. Rhodes JD, Thain JF, Wildon DC (1996) The pathway for systemic electrical signal conduction in the wounded tomato plant. Planta 200:50–57CrossRefGoogle Scholar
  160. Ricca U (1916) Soluzione d’un problema di fisiologia: la propagazione di stimulo nella Mimosa. Nuovo G Bot Ital 23:51–170Google Scholar
  161. Roblin G (1985) Analysis of the variation potential induced by wounding in plants. Plant Cell Physiol 26:455–461Google Scholar
  162. Roblin G, Bonnemain J-L (1985) Propagation in Vicia faba stem of a potential variation by wounding. Plant Cell Physiol 26:1273–1283Google Scholar
  163. Ruan Y-L, Llewellyn DJ, Furbank RT (2001) The control of single-celled cotton fiber elongation by developmentally reversible gating of plasmodesmata and coordinate expression of sucrose and K+ transport genes and expansin. Plant Cell 13:47–60PubMedGoogle Scholar
  164. Rüping B, Ernst AM, Jekat SB, Nordzieke S, Reineke AR, Müller B, Bornberg-Bauer E, Prüfer D, Noll GA (2010) Molecular and phylogenetic characterization of the sieve element occlusion gene family in Fabaceae and non-Fabaceae plants. BMC Plant Biol 10:219PubMedCrossRefGoogle Scholar
  165. Samejima M, Sibaoka T (1983) Identification of the excitable cells in the petiole of Mimosa pudica by intracellular injection of procion yellow. Plant Cell Physiol 24:33–39Google Scholar
  166. Sanders D, Pelloux J, Brownlee C, Harper JF (2002) Calcium at the crossroads of signaling. Plant Cell 14:401–417Google Scholar
  167. Schulz A (1999) Physiological control of plasmodesmatal gating. In: van Bel AJE, van Kesteren WJP (eds) Plasmodesmata. Structure, function, role in cell communication. Springer, Berlin, pp 173–204Google Scholar
  168. Schwan S, Menzel M, Fritzsche M, Heilmann A, Spohn U (2009) Micromechanical measurements of P-protein aggregates (forisomes) from Vicia faba plants. Biophys Biochem 139:99–105Google Scholar
  169. Sibaoka T (1966) Action potentials in plant organs. Symp Soc Exp Biol 20:49–74PubMedGoogle Scholar
  170. Sibaoka T (1969) Physiology of rapid movements in plants. Annu Rev Plant Physiol 20:165–184CrossRefGoogle Scholar
  171. Sibaoka T (1991) Rapid plant movements triggered by action potentials. J Plant Res 104:73–95Google Scholar
  172. Sinyukin AM, Britikov EA (1967) Action potentials in the reproductive system of plants. Nature 215:1278–1280CrossRefGoogle Scholar
  173. Sivaguru M, Fujiwara T, Samaj J, Baluska F, Yang Z, Osawa H, Maeda T, Mori T, Volkmann D, Matsumoto M (2000) Aluminium-induced 1→3-β-D-glucan inhibits cell-to-cell trafficking of molecules through plasmodesmata. A new mechanism of aluminium toxicity in plants. Plant Physiol 124:991–1005PubMedCrossRefGoogle Scholar
  174. Sivaguru M, Yamamoto Y, Rengel Z, Ahn S-J, Matsumoto M (2005) Early events responsible for aluminium toxicity symptoms in suspension-cultured tobacco cells. New Phytol 165:99–109PubMedCrossRefGoogle Scholar
  175. Sjölund RD (1997) The phloem sieve element: a river runs through it. Plant Cell 9:1137–1146PubMedCrossRefGoogle Scholar
  176. Sjolund RD, Shih CY (1983) Freeze-fracture analysis of phloem structure in plant tissue cultures. I The sieve element reticulum. J Ultrastr Res 82:111–121CrossRefGoogle Scholar
  177. Stahlberg R, Cosgrove DJ (1992) Rapid alterations in growth rate and electrical potentials upon stem excision in pea seedlings. Planta 187:523–531PubMedCrossRefGoogle Scholar
  178. Stahlberg R, Cosgrove DJ (1996) Induction and ionic basis of slow wave potentials in seedlings of Pisum sativum L. Planta 200:416–425PubMedCrossRefGoogle Scholar
  179. Stahlberg R, Cosgrove DJ (1997) The propagation of slow wave potentials in pea epicotyls. Plant Physiol 113:209–217PubMedGoogle Scholar
  180. Stahlberg R, Cleland RE, Van Volkenburgh E (2005) Decrement and amplification of slow wave potentials during their propagation in Helianthus annuus L. shoots. Planta 220:550–558PubMedCrossRefGoogle Scholar
  181. Stahlberg R, Cleland RE, Van Volkenburgh E (2006) Slow wave potentials – a propagating electrical signal unique to higher plants. In: Baluska F, Mancuso S, Volkmann D (eds) Communication in plants. Springer, Berlin, pp 291–308CrossRefGoogle Scholar
  182. Stankovic B, Davies E (1997) Intercellular communication in plants: electrical stimulation of proteinase inhibitor gene expression in tomato. Planta 202:402–406CrossRefGoogle Scholar
  183. Stankovic B, Zawadzki T, Davies E (1997) Characterization of the variation potential in sunflower. Plant Physiol 115:1083–1088PubMedGoogle Scholar
  184. Stankovic B, Witters DL, Zawadzki T, Davies E (1998) Action and variation potentials in sunflower: An analysis of their relationship and distinguishing characteristics. Physiol Plant 103:51–58CrossRefGoogle Scholar
  185. Thain JF, Gubb IR, Wildon DC (1995) Depolarization of tomato leaf cells by oligogalacturonide elicitors. Plant Cell Environ 18:211–214CrossRefGoogle Scholar
  186. Thiel G, Homann U, Plieth C (1997) Ion channel activity during the action potential in Chara: a new insight with new techniques. J Exp Bot 48:609–622PubMedCrossRefGoogle Scholar
  187. Thion L, Mazars C, Nacry P, Bouchez D, Moreau M, Ranjeva R, Thuleau P (1998) Plasma membrane depolarization-activated calcium channels stimulated by microtubule-depolymerizing drugs in wild-type Arabidopsis thaliana protoplasts, display constitutively large activities and a longer half-life in ton 2 mutant cells affected in the organization of the cortical microtubules. Plant J 13:603–610PubMedCrossRefGoogle Scholar
  188. Thorpe MR, Furch ACU, Minchin PEH, Föller J, van Bel AJE, Hafke JB (2010) Rapid cooling triggers forisome dispersion just before phloem transport stops. Plant Cell Environ 33:259–271PubMedCrossRefGoogle Scholar
  189. Thorsch J, Esau K (1981) Nuclear degeneration and the association of endoplasmic reticulum with the nuclear envelope and microtubules in maturing sieve elements of Gossypium hirsutum. J Ultrastr Res 74:195–204CrossRefGoogle Scholar
  190. Thuleau P, Moreau M, Schroeder JI, Ranjeva R (1994) Recent advances in the regulation of plant calcium channels: evidence for regulation by G-proteins, the cytoskeleton and second messengers. Curr Opin Plant Biol 1:424–427CrossRefGoogle Scholar
  191. Trebacz K, Simonis W, Schönknecht G (1994) Cytoplasmic Ca2+, K+, Cl and NO3 activities in the liverwort Conocephalum conicum L. at rest and during action potentials. Plant Physiol 106:1073–1084PubMedGoogle Scholar
  192. Trebacz K, Dziubinska H, Krol E (2006) Electrical signals in long-distance communication in plants. In: Baluska F, Mancuso S, Volkmann D (eds) Communication in plants. Springer, Berlin, pp 277–290CrossRefGoogle Scholar
  193. Trewavas A (1999) Le calcium, c’est la vie: Calcium makes waves. Plant Physiol 120:1–6PubMedCrossRefGoogle Scholar
  194. Trewavas AJ, Malho R (1997) Signal perception and transduction: the origin of the phenotype. Plant Cell 9:1181–1195PubMedCrossRefGoogle Scholar
  195. Tsien RW, Tsien RY (1990) Calcium channels, stores and oscillations. Annu Rev Cell Biol 6:715–760PubMedCrossRefGoogle Scholar
  196. Tsien RW, Hess P, Mc Cleskey EW, Rosenberg RL (1987) Calcium channels: mechanisms of selectivity, permeation, and block. Annu Rev Biophys Biophys Chem 16:265–790PubMedCrossRefGoogle Scholar
  197. Tsutsui I, Ohkawa T, Nagai R, Kishimoto U (1986) Inhibition of Cl channel activation in Chara corallina membrane by lanthanum ion. Plant Cell Physiol 27:1197–1200Google Scholar
  198. Tucker EB (1990) Calcium-loaded 1,2-bis(2-aminophenoxy)ethane-N, N, N′, N′-tetraacetic acid blocks cell-to-cell diffusion of carboxyfluorescein in staminal hairs of Setcreasea purpurea. Planta 182:34–38CrossRefGoogle Scholar
  199. Tuteja N, Umate P, van Bel AJE (2010) Forisomes: calcium-powered protein complexes with potential as ‘smart’ biomaterials. Trends Biotechnol 28:102–110PubMedCrossRefGoogle Scholar
  200. van Bel AJE (2003) The phloem, a miracle of ingenuity. Plant Cell Environ 26:125–149CrossRefGoogle Scholar
  201. van Bel AJE, Ehlers K (2005) Electrical signalling via plasmodesmata. In: Oparka KJ (ed) Plasmodesmata. Blackwell, Oxford, pp 263–278Google Scholar
  202. van Bel AJE, Hafke JB (2005) Physiochemical determinants of phloem transport. In: Holbrook NM, Zwieniecki M (eds) Vascular transport in plants. Elsevier, Burlington, pp 19–44CrossRefGoogle Scholar
  203. van Bel AJE, Kempers R (1997) The pore/plasmodesm unit; key element in the interplay between sieve element and companion cell. Progr Bot 58:278–291CrossRefGoogle Scholar
  204. van Bel AJE, Knoblauch M (2000) Sieve element and companion cell: the story of the comatose patient and the hyperactive nurse. Aust J Plant Physiol 27:477–487Google Scholar
  205. van Bel AJE, van Rijen HVM (1994) Microelectrode-recorded development of the symplasmic autonomy of the sieve element/companion cell complex in the stem phloem of Lupinus luteus L. Planta 192:165–175CrossRefGoogle Scholar
  206. van Bel AJE, Knoblauch M, Furch ACU, Hafke JB (2011a) (Questions)n on phloem biology. 1. Electropotential waves, Ca2+ fluxes and cellular cascades along the propagation pathway. Plant Sci 181:210–218PubMedCrossRefGoogle Scholar
  207. van Bel AJE, Knoblauch M, Furch ACU, Hafke JB, Patrick JW (2011b) (Questions)n on phloem biology. 2. Mass flow, molecular hopping, distribution patterns and macromolecular signalling. Plant Sci 181:325–330PubMedCrossRefGoogle Scholar
  208. van Sambeek JW, Pickard BG (1976) Mediation of rapid electrical, metabolic, transpirational, and photosynthetic changes by factors released from wounds. I. Variation potentials and putative action potentials. Can J Bot 54:2642–2650CrossRefGoogle Scholar
  209. van Sambeek JW, Pickard BG, Ulbright CE (1976) Mediation of rapid electrical, metabolic, transpirational, and photosynthetic changes by factors released from wounds. II. Mediation of the variation potential by Ricca’s factor. Can J Bot 54:2651–2661CrossRefGoogle Scholar
  210. Volk G, Franceschi VR (2000) Localization of a calcium-channel-like protein in the sieve element plasma membrane. Aust J Plant Physiol 27:779–786Google Scholar
  211. Walz C, Giavalisco P, Schad M, Juenger M, Klose J, Kehr J (2004) Proteomics of cucurbit phloem exudates reveals a network of defence proteins. Phytochemistry 65:1795–1804PubMedCrossRefGoogle Scholar
  212. Wang YF, Fan L-M, Zhang W-Z, Zhang W, Wu W-H (2004) Ca2+- permeable channels in the plasma membrane of Arabidopsis pollen are regulated by actin microfilaments. Plant Physiol 136:3892–3904PubMedCrossRefGoogle Scholar
  213. Wayne R (1994) The excitability of plant cells: with special emphasis on Characean internodal cells. Bot Rev 60:265–367PubMedCrossRefGoogle Scholar
  214. Webb AAR, McAinsh MR, Taylor JE, Hetherington AM (1996) Calcium ions as intracellular second messengers in higher plants. Adv Bot Res 22:45–96CrossRefGoogle Scholar
  215. White PJ (2004) Calcium signals in root cells: the roles of plasma membrane calcium channels. Biologia 59:77–83Google Scholar
  216. White PJ (2009) Depolarization-activated calcium channels shape the calcium signatures induced by low-temperature stress. New Phytol 183:6–8PubMedCrossRefGoogle Scholar
  217. White PJ, Broadley MR (2003) Calcium in plants. Ann Bot 92:487–511PubMedCrossRefGoogle Scholar
  218. White PJ, Ridout MS (1999) An energy-barrier model for the permeation of monovalent and divalent cations through the maxi cation channel in the plasma membrane of rye roots. J Membr Biol 168:63–75PubMedCrossRefGoogle Scholar
  219. Wildon DC, Thain JF, Minchin PEH, Gubb IR, Reilly AJ, Skipper YD, Doherty HM, O’Donnell PJ, Bowles DJ (1992) Electrical signalling and systemic proteinase inhibitor induction in the wounded plant. Nature 360:62–65CrossRefGoogle Scholar
  220. Will T, Tjallingii WF, Thönnessen A, van Bel AJE (2007) Molecular sabotage of plant defense by aphids. Proc Natl Acad Sci USA 104:10536–10541PubMedCrossRefGoogle Scholar
  221. Will T, Kornemann SR, Furch ACU, Tjallingii WF, van Bel AJE (2009) Aphid saliva counteracts sieve-tube occlusion: a universal phenomenon? J Exp Biol 22:3305–3312CrossRefGoogle Scholar
  222. Williams SE, Pickard BG (1972a) Properties of action potentials in Drosera tentacles. Planta 103:222–240CrossRefGoogle Scholar
  223. Williams SE, Pickard BG (1972b) Receptor potentials and action potentials in Drosera tentacles. Planta 103:193–221CrossRefGoogle Scholar
  224. Williams SE, Pickard BG (1974) Connections and barriers between cells of Drosera tentacles in relation to their electrophysiology. Planta 116:1–6CrossRefGoogle Scholar
  225. Williams SE, Spanswick RM (1976) Propagation of the neuroid action potential of the carnivorous plant Drosera. J Comp Physiol 108:211–223CrossRefGoogle Scholar
  226. Xie B, Wang X, Zhu M, Zhang Z, Hong Z (2011) CalS7 encodes a callose synthase responsible for callose deposition in the phloem. Plant J 65:1–14PubMedCrossRefGoogle Scholar
  227. Yoo BC, Lee JY, Lucas WJ (2002) Analysis of the complexity of protein kinases within the phloem sieve tube system. J Biol Chem 277:15325–15332PubMedCrossRefGoogle Scholar
  228. Zawadzki T (1980) Action potentials in Lupinus angustifolius L. shoots. V. Spread of excitation in the stem, leaves, and root. J Exp Bot 31:1371–1377CrossRefGoogle Scholar
  229. Zawadzki T, Davies E, Dziubinska H, Trebacz K (1991) Characteristics of action potentials in Helianthus annuus. Physiol Plant 83:601–604CrossRefGoogle Scholar
  230. Zhang W, Fan L, Wu W (2007) Osmo-sensitive and stretch-activated calcium-permeable channels in Vicia faba guard cells are regulated by actin dynamics. Plant Physiol 143:1140–1151PubMedCrossRefGoogle Scholar
  231. Zimmermann MR, Felle HH (2009) Dissection of heat-induced systemic signals: superiority of ion fluxes to voltage changes in substomatal cavities. Planta 229:539–547PubMedCrossRefGoogle Scholar
  232. Zimmermann MR, Maischak H, Mithöfer A, Boland W, Felle HH (2009) System potentials, a novel electrical long-distance apoplastic signal in plants, induced by wounding. Plant Physiol 149:593–600CrossRefGoogle Scholar
  233. Zimmermann MR, Hafke JB, van Bel AJE, Furch ACU (2013) The interaction of xylem and phloem during exudation and wound occlusion in Cucurbita maxima. Plant Cell Environ 36:337–347CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Plant Cell Biology Research Group, Institute of General BotanyJustus-Liebig University GiessenGießenGermany
  2. 2.Plant Cell Physiology Group, Institute of Plant PhysiologyJustus-Liebig University GiessenGießenGermany

Personalised recommendations