Skip to main content

A Temporal Network Version of Watts’s Cascade Model

  • Chapter
  • First Online:
Temporal Networks

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

Threshold models of cascades in the social and economical sciences explain the spread of opinion and innovation as an effect of social influence. In threshold cascade models, fads or innovation spread between agents as determined by their interactions to other agents and their personal threshold of resistance. Typically, these models do not account for structure in the timing of interaction between the units. In this work, we extend a model of social cascades by Duncan Watts to temporal interaction networks. In our model, we assume agents are influenced by their friends and acquaintances at certain time into the past. That is, the influence of the past ages and becomes unimportant. Thus, our modified cascade model has an effective time window of influence. We explore two types of thresholds—thresholds to fractions of the neighbors, or absolute numbers. We try our model on six empirical datasets and compare them with null models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Balogh, J., Pittel, B.G.: Bootstrap percolation on the random regular graph. Random Struct. Alg. 30, 257–286 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barabási, A.L.: The origin of bursts and heavy tails in human dynamics. Nature 435(7039), 207–211 (2005)

    Article  ADS  Google Scholar 

  3. Bass, F.: A new product growth model for consumer durables. Manag. Sci. 50, 1833–1840 (1969)

    Article  Google Scholar 

  4. Dodds, P.S., Watts, D.J.: Universal behavior in a generalized model of contagion. Phys. Rev. Lett. 92, 218701 (2004)

    Article  ADS  Google Scholar 

  5. Dunne, J.A., Williams, R.J., Martinez, N.D.: Food-web structure and network theory: The role of connectance and size. Proc. Natl. Acad. Sci. USA 99, 12917–12922 (2002)

    Article  ADS  Google Scholar 

  6. Eckmann, J.P., Moses, E., Sergi, D.: Entropy of dialogues creates coherent structures in e-mail traffic. Proc. Natl. Acad. Sci. USA 101, 14333–14337 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Fontes, L.R.G., Schonmann, R.H.: Bootstrap percolation on homogeneous trees has 2 phase transitions. J. Stat. Phys. 132, 839–861 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Goh, K.I., Barabási, A.L.: Burstiness and memory in complex systems. EPL 81, 48002 (2008)

    Article  ADS  Google Scholar 

  9. Granovetter, M.: Threshold models of collective behavior. Am. J. Sociol. 83(6), 1420–1443 (1978)

    Article  Google Scholar 

  10. Holme, P., Saramäki, J.: Temporal networks. Phys. Rep. 519, 97–125 (2012)

    Article  Google Scholar 

  11. Holme, P., Edling, C.E., Liljeros, F.: Structure and time-evolution of an internet dating community. Soc. Network 26, 155–174 (2004)

    Article  Google Scholar 

  12. Iribarren, J.L., Moro, E.: Impact of human activity patterns on the dynamics of information diffusion. Phys. Rev. Lett. 103, 038702 (2009)

    Article  ADS  Google Scholar 

  13. Isella, L., Stehlé, J., Barrat, A., Cattuto, C., Pinton, J.F., Van den Broeck, W.: What’s in a crowd? Analysis of face-to-face behavioral networks. J. Theor. Biol. 271, 166–180 (2011)

    Google Scholar 

  14. Karimi, F., Holme, P.: Threshold model of cascades in temporal networks (2012). E-print 1207.1206

    Google Scholar 

  15. Karsai, M., Kivelä, M., Pan, R.K., Kaski, K., Kertész, J., Barabási, A.L., Saramäki, J.: Small but slow world: how network topology and burstiness slow down spreading. Phys. Rev. E 83, 025102 (2011)

    Article  ADS  Google Scholar 

  16. Latané, B.: Dynamic social impact: the creation of culture by communication. J. Comm. 46, 13–25 (1996)

    Article  Google Scholar 

  17. Latané, B., L’Herrou, T.: Spatial clustering in the conformity game: dynamic social impact in electronic groups. J. Pers. Soc. Psychol. 70, 1218–1230 (1996)

    Article  Google Scholar 

  18. Newman, M.E.J.: Networks: An introduction. Oxford University Press, Oxford (2010)

    MATH  Google Scholar 

  19. Rocha, L.E.C., Liljeros, F., Holme, P.: Information dynamic shape the sexual networks of internet-mediated prostitution. Proc. Natl. Acad. Sci. USA 107, 5706–5711 (2010)

    Article  ADS  MATH  Google Scholar 

  20. Said, A., De Luca, E.W., Albayrak, S.: How social relationships affect user similarities. In: Proceedings of the ACM IUI’10 Workshop on Social Recommender Systems (2010)

    Google Scholar 

  21. Takaguchi, T., Masuda, N., Holme, P.: Bursty communication patterns facilitate spreading in a threshold-based epidemic dynamics (2012). E-print 1206.2097

    Google Scholar 

  22. Valente, T.W.: Network Models of the Diffusion of Innovations. Hampton Press, Gresskill (1995)

    Google Scholar 

  23. Vazquez, A., Raćz, B., Lukaćs, A., Barabaśi, A.L.: Impact of non-poissonian activity patterns on spreading processes. Phys. Rev. Lett. 98, 158702 (2007)

    Article  ADS  Google Scholar 

  24. Watts, D.J.: A simple model of global cascades on random networks. Proc. Natl. Acad. Sci. USA 99, 5766–5771 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support by the Swedish Research Council and the WCU program through NRF Korea funded by MEST R31–2008–10029. The authors thank Taro Takaguchi for comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petter Holme .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Karimi, F., Holme, P. (2013). A Temporal Network Version of Watts’s Cascade Model. In: Holme, P., Saramäki, J. (eds) Temporal Networks. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36461-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36461-7_16

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36460-0

  • Online ISBN: 978-3-642-36461-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics