Skip to main content

Design and Safety Analysis of a Drive-by-Wire Vehicle

  • Chapter
  • First Online:

Abstract

The contribution introduces a modular and flexible experimental vehicle for investigation of novel vehicle electronics. The experimental vehicle features 4-wheel-drive, 4-wheel-steering and electric brakes. Each wheel can be actuated individually. All actuators are controlled by-wire without mechanical or hydraulic fall-back layer. To evaluate the safety of the experimental vehicle on the topmost functional layer (“vehicle layer”), a novel approach for targeted safety analysis is introduced. The approach especially aims at by-wire vehicles with a high degree of functional redundancy between different actuation units and strong integration of driving functionalities as steering or braking. For demonstration, the results of a simplified hazard analysis according to ISO 26262 for operation of the experimental vehicle in a well defined environment are presented. The results serve as a basis for safety evaluation of the vehicle using the introduced approach.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Torque vectoring refers to an approach where individual wheels of a vehicle are driven with individual drive torques. When driving the wheels at one side of the vehicle with a different torque than the wheels of the opposing side, an additional yaw moment is generated. For further information including evaluation of safety criticality see, e.g., Euchler et al. (2010).

  2. 2.

    In this context, “by-wire” control means that actuators in the vehicle are controlled purely electronically without any mechanical or hydraulic linkage between the actuator and the driver. MOBILE implements by-wire control for braking, steering, and the drive motors.

  3. 3.

    ISO 26262: Road Vehicles—Functional Safety, edition 2011.

  4. 4.

    According to ISO 26262, a safety goal is a “top level safety requirement as a result of the hazard analysis and risk assessment” (ISO 26262-1:2011, p. 14).

  5. 5.

    ISO/IEC 42010:2007 defines architecture as follows: “The fundamental organization of a system, embodied in its components, their relationships to each other and the environment, and the principles governing its design and evolution”.

  6. 6.

    The architecture of a system can be described from different views depending on the goal of the description. Examples can be business views, process views, but also functional or hardware views (Masak 2010). For some of these views guidelines for standardized diagrams exist, e.g., UML for software systems (Starke 2008).

  7. 7.

    In the following, hierarchical layers are always referred to as “X level” or “X layer” (with X standing for vehicle, system, etc.) to clearly distinguish between referencing of a layer and the general use of the words system, component, or element to refer to certain elements independent from layers.

  8. 8.

    Original Equipment Manufacturer, e.g., BMW, AUDI, Toyota for the automotive industry

  9. 9.

    ISO 26262 defines failure as the “termination of the ability of an element to perform a function as required” (ISO26262-1:2011, p. 7).

  10. 10.

    United Nations Economic Commission for Europe: Brake System Homologation.

  11. 11.

    Electromagnetic interference.

  12. 12.

    Note: For fly-by-wire systems at least quadruple redundancy for military aircrafts and higher degrees of redundancy for civil aviation are required (Collinson 1999).

  13. 13.

    In a fault tolerant unit, a defined number of faults does not lead to a failure of the overall unit, e.g.,Wilwert et al. (2005).

  14. 14.

    A common cause failure is a “failure of two or more elements of an item resulting from a single specific event or root cause” (ISO26262-1:2011, p.3).

  15. 15.

    For comparison: In aviation, sensors are sampled about \(100\) times per second which roughly equals the minimal demands in the automotive field (data for A320, Collinson (1999)).

  16. 16.

    Knowledge denotes the “awareness, consciousness, or familiarity gained by experience or learning” (Collins 2010). In the project MOBILE, the “self-awareness” of the vehicle is considered. The “experience” is provided at design time based on experiments or statistics.

  17. 17.

    Official Translation by the Langenscheidt Translation Service of the German Civil Code (BGB) §823 in the version of its promulgation from 2nd of January 2002, last amended by statute of 28th of September 2009.

  18. 18.

    IEC 61508: Functional Safety of Electrical/Electronic/Programmable Electronic Safety-related Systems, edition 2.0.

  19. 19.

    Automotive Safety Integrity Levels (ISO26262-1:2011, p. 2).

  20. 20.

    ISO 26262 defines the safe state as “the operating mode of an item without an unreasonable level or risk” (ISO26262-1:2011, p.14), while risk refers to the “combination of the probability of occurrence of harm and the severity of that harm” (ISO26262-1:2011, p.13).

  21. 21.

    The Automotive Safety and Integrity Levels (ASILs) are used to classify hazards according to ISO 26262. ASIL levels range from A (least stringent) to D (most stringent).

  22. 22.

    Controllability refers to the “ability to avoid a specified harm or damage through the timely intervention of the persons involved, possibly with support from external measures” (ISO26262-1:2011, p. 4).

  23. 23.

    In this context, the severity gives an “estimate of the extent of harm to one or more individuals that can occur in a potentially hazardous situation” (ISO26262-1:2011, p. 16).

  24. 24.

    Exposure classifies the frequency of being in a “an operational situation that can be hazardous if coincident with [the currently investigated] failure” (ISO26262-1:2011, p. 6).

  25. 25.

    According to ISO 26262 ASIL decomposition denotes the “apportioning of safety requirements redundantly to sufficiently independent elements” (ISO26262-1::2011, p.2).

  26. 26.

    A method is “a way of proceeding or doing something, esp a systematic or regular one” Collins (2010). During a development process, (multiple) methods can be applied to achieve necessary results (Hammerschall 2008).

  27. 27.

    “A cut set refers to the group of those elements or units which will make the system fail if their failure occurs. The minimum number of such units form the minimal cut set” (Verma and Ajit 2010, p. 85].)

  28. 28.

    The structure function defines the “dependence of the system state on the state of its components” (Gertsbakh (2000), p.1).

References

  • Abele, A.: Design and realization of an integrated safety concept based on an architecture model with the given example for the serial development of a powertrain control unit used in electric driven vehicle. In: Hybrid and Electric Vehicles, pp. 481–525. Braunschweig (2012)

    Google Scholar 

  • Abele, M.: Modellierung und Bewertung hochzuverlässiger Energiebordnetz-Architekturen für sicherheitsrelevante Verbraucher in Kraftfahrzeugen. Ph.D. thesis, Universität Kassel, Kassel (2008)

    Google Scholar 

  • Adachi, M., Papadopoulos, Y., Sharvia, S., Parker, D., Tohdo, T.: An approach to optimization of fault tolerant architectures using HiP-HOPS. Softw. Pract. Experience 41(11), 1303–1327 (2011)

    Google Scholar 

  • Anwar, S., Niu, W.: Analytical redundancy based predictive fault tolerant control of a steer-by-wire system using nonlinear observer. In: 2010 IEEE International Conference on Industrial Technology, pp. 477–482 (2010)

    Google Scholar 

  • Arbitmann, M., Raste, T., Lauer, P., Kelling, E., Eckert, A., Rieth, P.E.: Motion Control—Zentraler Baustein zukünftiger funktional strukturierter Domänenarchitektur im Fahrzeug. In: AUTOREG 2011, pp. 375–387. Baden-Baden (2011)

    Google Scholar 

  • Armbruster, M.: Eine fahrzeugübergreifende X-by-Wire Plattform zur Ausführung umfassender Fahr- und Assistenzfunktionen. Ph.D. thesis, Universität Stuttgart, München (2009)

    Google Scholar 

  • Armbruster, M., Zimmer, E., Lehmann, M., Reichel, R., Sieglin, E., Spiegelberg, G., Sulzmann, A.: Affordable X-By-Wire technology based on an innovative scalable E/E platform-concept. In: IEEE 63rd Vehicular Technology Conference, pp. 3016–3020. Melbourne, Australia (2009)

    Google Scholar 

  • Beal, C.E., Gerdes, J.C.: Experimental validation of a linear model predictive envelope controller in the presence of vehicle nonlinearities. In: 6th IFAC Symposium on Advances in Automotive Control. Munich (2010)

    Google Scholar 

  • Bergmiller, P., Ibele, P., Maurer, M., Gerdes, J.C.: Development tool for dynamic drive control systems. ATZelektronik worldwide 2011–03, 60–67 (2011)

    Article  Google Scholar 

  • Bergmiller, P., Maurer, M.: Flexible Versuchsträger als Testplattform für Antriebskonzepte in Elektrofahrzeugen. In: Schäfer, H. (ed.) 2012, Trends in der elektrischen Antriebstechnologie für Hybrid- und Elektrofahrzeuge, pp. 232–243. Expert Verlag, Renningen (2012)

    Google Scholar 

  • Bergmiller, P., Maurer, M., Lichte, B.: Probabilistic Fault Detection and Handling Algorithm for Testing Stability Control Systems with a Drive-By-Wire Vehicle. In 2011 IEEE International Symposium on Intelligent Control (ISIC), pp. 601–606. Denver (CO), USA (2011b)

    Google Scholar 

  • Bernard, M., Buckl, C., Döricht, V., Fehling, M., Fiege, L., von Grolmann, H., Ivandic, N., Janello, C., Klein, C., Kuhn, K.-J., Platzlaff, C., Riedl, B.C., Schätz, B., Stanek, C.: Abschlussbericht des vom Bundesministerium für Wirtschaft und Technologie geförderten Verbundvorhabens "eCar-IKT-Systemarchitektur für Elektromobilität". ForTISS GmbH, Garching (2010)

    Google Scholar 

  • Bertacchini, A., Pavan, P., Tamagnini, L., Fergnani, L.: Control of brushless motor with hybrid redundancy for force feedback in steer-by-wire applications. In: 31st Annual Conference of IEEE Industrial Electronics Society, 2005. IECON 2005, pp. 1407–1412. Raleigh, USA (2005)

    Google Scholar 

  • Blanc, S., Bonastre, A., Gil, P.: Dependability assessment of by-wire control systems using fault injection. J. Syst. Archit. 55(2), 102–113 (2009)

    Article  Google Scholar 

  • Carsten, O.M.J., Nilsson, L.: Safety assessment of driver assistance systems. Eur. J. Transp. Infrastruct. Res. 1(3), 225–243 (2001)

    Google Scholar 

  • Collins: Collins English Dictionary 30th Anniversary Edition, 10th edn. William Collins Sons & Co. Ltd, London (2010)

    Google Scholar 

  • Collinson, R.: Fly-by-wire. Comput. Control Eng. J. 10(4), 141 (1999)

    Article  Google Scholar 

  • Cornelsen, K., Jänsch, D., Gerson, S., Nietschke, W., Maurer, M., Canders, W. R., Schumacher, W., Meyer, H.: InDrive Simulator—Innovative Tool for Simulating and Designing Complex Drive Structures in Real Operation. In: Hybrid and Electric Vehicles, pp. 166–186. Braunschweig (2011)

    Google Scholar 

  • Dilger, E., Karrelmeyer, R., Straube, B.: Fault tolerant mechatronics [automotive applications]. In: 10th IEEE International On-Line Testing Symposium, pp. 214–218. IEEE Computer Society (2004)

    Google Scholar 

  • Dominguez-garcia, A.D., Kassakian, J.G., Schindall, J.E.: A Backup System for Automotive Steer-by-Wire, Actuated by Selective Braking. In: 35th Annual IEEE Power Electronics Specialists Conference, pp. 383–388. Aachen (2004)

    Google Scholar 

  • Euchler, M., Bonitz, T., Mitte, D., Geyer, M.: Bewertung der Fahrsicherheit eines Elektrofahrzeugs bei stationärer Kreisfahrt. ATZ - Automobiltechnische Zeitschrift 2010–03, 206–213 (2010)

    Google Scholar 

  • Freitag, G., Kuhn, K.-J.: Hochintegrierter Antrieb: Radnabenantrieb ohne Reibbremse. In: Schäfer, H. (ed.) Trends in der elektrischen Antriebstechnologie für Hybrid- und Elektrofahrzeuge, pp. 73–83. Expert Verlag, Renningen (2012)

    Google Scholar 

  • Gadda, C.D., Laws, S.M., Gerdes, J.C.: Generating diagnostic residuals for steer-by-wire vehicles. IEEE Trans. Control Syst. Technol. 15(3), 529–540 (2007)

    Article  Google Scholar 

  • Gertsbakh, I.: Reliability Theory With Applications to Preventive Maintenance. Springer, Berlin (2000)

    Google Scholar 

  • Goldschmidt, D.: Entwicklung eines fahrdynamischen Stabilitätsprogramms für ein Drive-by-Wire-Versuchsfahrzeug. Diplomarbeit, TU Braunschweig (2012)

    Google Scholar 

  • Hammerschall, U.: Flexible Methodenintegration in anpassbare Vorgehensmodelle. Technische Universität München, Dissertation (2008)

    Google Scholar 

  • Hasan, M.S., Anwar, S.: Sliding mode observer based predictive fault diagnosis of a steer-by-wire system. In: Proceedings of the 17th International Federation of Automatic Control World Congress, pp. 8534–8539. Seoul, Korea (2008)

    Google Scholar 

  • Hayama, R., Higashi, M., Kawahara, S., Nakano, S., Kumamoto, H.: Fault tolerant architecture of yaw moment management with steer-by-wire, active braking and driving-torque distribution integrated control. SAE Automotive Electronics Series, 2008–01-01 (2008)

    Google Scholar 

  • He, L., Zong, C., Wang, C.: A steering-by-wire fault-tolerance control strategy based on multi-dimension gauss hidden Markov model. In: International Conference on Intelligent Control and Information Processing, pp. 227–230. Dalian, China (2010)

    Google Scholar 

  • Heiner, G., Thurner, T.: Time-triggered architecture for safety-related distributed real-time systems in transportation systems. In: Symposium, Twenty-Eighth Annual International symposium on Fault-Tolerant Computing, pp. 402–432. IEEE Computer Society, Washington, DC (1998)

    Google Scholar 

  • Herath, I., Roberts, C., Arvanitis, T.N., Bold, A.: Satisfying design constraints for automotive safety-critical systems. SAE Automotive Electronics Series, 2007–01-14 (2007)

    Google Scholar 

  • Isermann, R., Beck, M.: Modellbasierte Methoden zur Erhöhung der Verfügbarkeit und Sicherheit von Fahrwerkkomponenten. AUTOREG 2011, pp. 679–690 (2011)

    Google Scholar 

  • Isermann, R., Schwarz, R., Stölzl, S.: Fault-tolerant drive-by-wire systems. IEEE Control Syst. Mag. 22(5), 64–81 (2002)

    Article  Google Scholar 

  • Johannessen, P.: SIRIUS, : Technical Report 01. Department of Computer Engineering Chalmers University of Technology. Göteborg, Sweden (2001)

    Google Scholar 

  • Johannessen, P., Ahlström, K., Torin, J.: Conceptual design of distributed by-wire systems. SAE Automotive Electronics Series, 2002–01-02 (2002)

    Google Scholar 

  • Johannessen, P., Törner, F., Torin, J.: Actuator based hazard analysis for safety critical systems. In: Computer Safely Reliability Security, vol. 3219, pp. 130–141 (2004)

    Google Scholar 

  • Johannessen, P., Törner, F., Torin, J.: Experiences from model based development of drive-by-wire control systems. In: Kleinjohann, B., Gao, G.R., Kopetz, H., Kleinjohann, L., Rettberg, A. (eds.) Design Methods and Applications for Distributed Embedded Systems, pp. 103–112. Springer, Boston (2004)

    Google Scholar 

  • Kelling, N.A., Heck, W.: The BRAKE project—centralized versus distributed redundancy for brake-by-wire systems. SAE Automotive Electronics Series, 2002–01-02 (2002)

    Google Scholar 

  • Kim, M.H., Lee, S., Lee, K.C.: Kalman predictive redundancy system for fault tolerance of safety-critical systems. IEEE Trans. Industr. Inf. 6(1), 46–53 (2010)

    Article  Google Scholar 

  • Koehn, P., Eckrich, M., Smakman, H., Schaffert, A.: Integrated chassis management : introduction into BMW’s approach to ICM. SAE Technical Paper Series 1(1219), (2006)

    Google Scholar 

  • Köhler, R., Broy, J.: Markov-Ketten und Autokorrelation in der Sprach- und Textanalyse. In: Köhler, R., Broy, J. (ed.) Glottometrika 5 Bochum (1983)

    Google Scholar 

  • Legler, H., Gehrke, B., Krawczyk, O., Schasse, U., Rammer, C., Leheyda, N., Sofka, W.: Die Bedeutung der Automobilindustrie für die deutsche Volkswirtschaft im europäischen Kontext (2009)

    Google Scholar 

  • Lieberam, J.: Entwicklung eines Softwaresystems zur Zustandserfassung und -regelung im Kraftfahrzeug. Diplomarbeit, TU Braunschweig (2011)

    Google Scholar 

  • Löw, P., Pabst, R., Petry, E.: Funktionale Sicherheit in der Praxis, 1st edn. Heidelberg: dpunkt.verlag GmbH (2010)

    Google Scholar 

  • Mahmud, N., Papadopoulos, Y., Walker, M.: A translation of state machines to temporal fault trees. In: 2010 International Conference on Dependable Systems and Networks Workshops, pp. 45–51. Chicago, USA (2010)

    Google Scholar 

  • Maier, M.W., Rechtin, E.: The Art of Systems Architecting, 3rd edn. CRC Press Taylor & Francis Group, Boca Raton (2009)

    Google Scholar 

  • Masak, D.: Der Architekturreview. Springer, Berlin (2010)

    Google Scholar 

  • Maurer, M.: Flexible Automatisierung von Straßenfahrzeugen mit Rechnersehen. Dissertation, Universität der Bundeswehr München, Düsseldorf (2000)

    Google Scholar 

  • Maurer, M.: Automotive systems engineering—a personal perspective. In: Maurer, M., Winner, H. (eds.) Automotive Systems Engineering. Springer, Heidelberg (2013)

    Google Scholar 

  • McLaughlin, S.B.: Analytic assessment of collision avoidance systems and driver dynamic performance in rear-end crashes and near-crashes. Ph.D. thesis, Virginia Polytechnic Institute and State University, USA (2007)

    Google Scholar 

  • Mehmood, A., Easa, S.M.: Modeling reaction time in car-following behaviour based on human factors. Int. J. Appl. Sci. Eng. Techn. 5(14), 93–101 (2009)

    Google Scholar 

  • Miller, P.: A Prototype distributed architecture for safety critical automotive systems. SAE Automotive Electronics Series, 2007–01-16 (2007)

    Google Scholar 

  • Mishra, P.K., Naik, S.M.: Distributed control system development for flexray-based systems. SAE Automotive Electronics Series, 2005–01-12 (2005)

    Google Scholar 

  • Mitzlaff, M., Lang, M., Kapitza, R., Schröder-Preikschat, W.: A membership service for a distributed, embedded system based on a time-triggered flexray network. In: 2010 European Dependable Computing Conference, pp. 155–162. Valencia, Spain (2010)

    Google Scholar 

  • Motruk, B., Diemer, J., Ernst, R., Buchty, R., Berekovic, M.: IDAMC : A many-core platform with run-time monitoring for mixed-criticality. In: 14th International High Assurance Systems Engineering Symposium Omaha, USA (2012)

    Google Scholar 

  • Muenchhof, M., Beck, M., Isermann, R.: Fault-tolerant actuators and drives—structures, fault detection principles and applications. Ann. Rev. Control 33(2), 136–148 (2009)

    Article  Google Scholar 

  • Müller, K., Steinbach, T., Korf, F., Schmidt, T.C.: A real-time ethernet prototype platform for automotive applications. In: 2011 IEEE International Conference on Consumer Electronics -Berlin (ICCE-Berlin), pp. 221–225. Berlin (2011)

    Google Scholar 

  • Neudörfer, A.: Konstruieren sicherheitsgerechter Produkte. Springer, Heidelberg (2011)

    Google Scholar 

  • Palin, R., Ward, D., Habli, I., Rivett, R.: ISO 26262 safety cases: compliance and assurance. In: 6th IET International Conference on System Safety, pp. 1–6. Birmingham, UK (2011)

    Google Scholar 

  • Papadopoulos, Y., McDermid, J., Sasse, R., Heiner, G.: Analysis and synthesis of the behaviour of complex programmable electronic systems in conditions of failure. Reliab. Eng. Syst. Saf. 71(3), 229–247 (2001)

    Article  Google Scholar 

  • Park, T.-j., Han, C.-s., Lee, S.-h.: Development of the electronic control unit for the rack-actuating steer-by-wire using the hardware-in-the-loop simulation system. Mechatronics 15(8), 899–918 (2005)

    Google Scholar 

  • Pfeffer, P., Harrer, M.: Lenkungshandbuch. Wiesbaden: Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH (2011)

    Google Scholar 

  • Philipps, J.: Kontrolle ist gut, Misstrauen ist besser: Funktionale Sicherheit für integrierte Softwarefunktionen. In: Schäfer, H. (ed.) Trends in der elektrischen Antriebstechnologie für Hybrid- und Elektrofahrzeuge, pp. 129–140. Expert Verlag, Renningen (2012)

    Google Scholar 

  • Pimentel, J.: Safety-reliability of distributed embedded system fault tolerant units. In: IECON’03. 29th Annual Conference of the IEEE Industrial Electronics Society, pp. 945–950. Roanoke, USA (2003)

    Google Scholar 

  • Piyabongkarn, D., Lew, J.Y., Rajamani, R., Grogg, J.A., Yuan, Q.: On the use of torque-biasing systems for electronic stability control: limitations and possibilities. IEEE Trans. Control Syst. Technol. 15(3), 581–589 (2007)

    Article  Google Scholar 

  • Pruckner, A., Stroph, R., Pfeffer, P.: Drive-By-Wire. In: Eskandarian, A. (ed.) Handbook of Intelligent Vehicles, pp. 235–282. Springer, London (2012)

    Google Scholar 

  • Rausand, M., Hoyland, A.: System reliability theory—models, statistical methods and applications. Wiley, Hoboken (2009)

    Google Scholar 

  • Rehage, D., Carl, U.B., Vahl, A.: Redundancy management of fault tolerant aircraft system architectures—reliability synthesis and analysis of degraded system states. Aerosp. Sci. Technol. 9(4), 337–347 (2005)

    Article  Google Scholar 

  • Reichel, R., Armbruster, M.: X-by-Wire Plattform—Konzept und Auslegung. at—Automatisierungstechnik 59(9), 583–596 (2011)

    Google Scholar 

  • Reif, K.: Automobilelektronik, Eine Einführung für Ingenieure, 3rd edn. Wiesbaden: Vieweg+Teubner GWV Fachverlage GmbH (2009)

    Google Scholar 

  • Reinold, P., Nachtigal, V., Trächtler, A.: An advanced electric vehicle for development and test of new vehicle-dynamics control strategies. In: 6th IFAC Symposium Advances in Automotive Control. Munich (2010)

    Google Scholar 

  • Richter, D., Köhnen, A.: Sicherheitsziele für zukünftige Elektro-Fahrzeuge: Sicherheitsarchitektur für den elektrischen Antrieb basierend auf den Anforderungen der ISO 26262. In: Schäfer, H. (ed.) Trends in der elektrischen Antriebstechnologie für Hybrid- und Elektrofahrzeuge, pp. 95–100. Expert Verlag, Renningen (2012)

    Google Scholar 

  • Rieth, P.E.: Das mechatronische Fahrwerk der Zukunft. In H. Winner, S. Hakuli, & G. Wolf (eds., 2012), Handbuch Fahrerassistenzsysteme, pp. 626–631. Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH, Wiesbaden (2012)

    Google Scholar 

  • Rohe, M.: Entwicklung der Gesamtfahrzeugstrategie eines E-Fahrzeugprototyps mit Torque Vectoring. In: Schäfer, H. (ed.), Trends in der elektrischen Antriebstechnologie für Hybrid- und Elektrofahrzeuge, pp. 101–111. Expert Verlag, Renningen (2012)

    Google Scholar 

  • Sakurai, K., Matsubara, M., Hoshino, M.: Membership middleware for dependable and cost-effective X-by-wire systems. SAE Automotive Electronics Series, 2008–01-04, 1–9 (2008)

    Google Scholar 

  • Sangiovanni-Vincentelli, A.: Quo Vadis, SLD? reasoning about the trends and challenges of system Level design. Proc. IEEE 95(3), 467–506 (2007)

    Article  Google Scholar 

  • Schäuffele, J., Zurawka, T.: Automotive Software Engineering—Grundlagen, Prozesse, Methoden und Werkzeuge. Friedr. Vieweg & Sohn Verlag/GWV Fachverlage GmbH, Wiesbaden (2004)

    Google Scholar 

  • Schroer, R.: Flight control goes digital [Part Two, NASA at 50]. IEEE Aerosp. Electron. Syst. Mag. Part Two 23(10), 23–28 (2008)

    Article  Google Scholar 

  • Schwall, M.L., Gerdes, J.C.: A probabilistic approach to residual processing for vehicle fault detection. In: Proceedings of the 2002 American Control Conference, vol. 3, pp. 2552–2557 (2002)

    Google Scholar 

  • Siedersberger, K.-H.: Komponenten zur automatischen Fahrzeugführung in sehenden (semi-), autonomen Fahrzeugen. Dissertation, Universität der Bundeswehr München (2003)

    Google Scholar 

  • Sieglin, E.: Beitrag zur Energieversorgung eines innovativen Drive-by-wire-Fahrzeugkonzepts. Dissertation, Technische Universität Dresden, Renningen (2009)

    Google Scholar 

  • Sinha, P.: Architectural design and reliability analysis of a fail-operational brake-by-wire system from ISO 26262 perspectives. Reliab. Eng. Syst. Saf. 96(10), 1349–1359 (2011)

    Article  Google Scholar 

  • Smakman, H., Köhn, I.P., Vieler, D.H.: Integrated Chassis Management—ein Ansatz zur Strukturierung der Fahrdynamikregelsysteme. In: 17. Aachener Kolloquium Fahrzeug- und Motorentechnik, pp. 1–13 (2008)

    Google Scholar 

  • Starke, G.: Effektive Software-Architekturen. Carl Hanser Verlag, Munich (2008)

    Google Scholar 

  • Sundar, M., Plunkett, D.: Brake-by-wire, motivation and engineering—GM sequel. SAE Automotive Electronics Series, 2006–01-31 (2006)

    Google Scholar 

  • Tkachev, O.A.: Application of Markov chains for the reliability analysis of systems with a complex structure. Cybern. Syst. Anal. 19(5), 96–101 (1983)

    Google Scholar 

  • Töpler, S.: Entwicklung eines Abgleichreglers für die Fahrzeug Längs- und Querdynamik. Diplomarbeit, TU Braunschweig (2010)

    Google Scholar 

  • Touloupis, E., Flint, J.A., Chouliaras, V.A., Ward, D.D.: A fault-tolerant processor core architecture for safety-critical automotive applications. SAE Automotive Electronics Series, 2005–01-03 (2005)

    Google Scholar 

  • Trächtler, A., Niewels, F. Integrierte Querdynamikregelung mit ESP, AFS und aktiven Fahrwerksystemen. In: Isermann, R. (ed.) Fahrdynamik-Regelung, pp. 237–251. Friedr. Vieweg & Sohn Verlag | GWV Fachverlage GmbH, Wiesbaden (2006)

    Google Scholar 

  • Tucci-Piergiovanni, S., Mraidha, C., Wozniak, E., Lanusse, A., Gerard, S.: A UML model-based approach for replication assessment of AUTOSAR safety-critical applications. In: IEEE 10th International Conference on Trust, Security and Privacy in Computing and Communications, pp. 1176–1187. Changsha, China (2011)

    Google Scholar 

  • Verma, A.K., Ajit, S.: Reliability and Safety Engineering. Springer, London (2010)

    Google Scholar 

  • von Vietinghoff, A.: Nichtlineare Regelung von Kraftfahrzeugen in querdynamisch kritischen Fahrsituationen. Dissertation, Universität Karlsruhe (2008)

    Google Scholar 

  • Walker, M., Papadopoulos, Y.: Qualitative temporal analysis: towards a full implementation of the fault tree handbook. Control Eng. Pract. 17(10), 1115–1125 (2009)

    Article  Google Scholar 

  • Waraus, D.: Steer-by-wire system based on flexray protocol. In: Applied Electronics, pp. 269–272. Czech Republic, Pilsen (2009)

    Google Scholar 

  • Wilwert, C., Navet, N., Song, Y.Q., Simonot-Lion, F.: Design of automotive X-by-wire systems. In: Zurawski, R. (ed.) The Industrial Communication Technology Handbook, pp. (29–1)–(29–34). CRC Press, Boca Raton (2005)

    Google Scholar 

  • X-by-Wire Project (1998). Brite-EuRam 111 Program. X-By-Wire—safety related fault tolerant systems in vehicles, final report

    Google Scholar 

  • Zhen, B., Altemare, C., Anwar, S.: Fault tolerant steer-by-wire road wheel control system. In: Proceedings of the 2005 American Control Conference, pp. 1619–1624. Portland, USA (2005)

    Google Scholar 

  • Zuo, G., Kumamoto, H., Nishihara, O., Hayama, R., Nakano, S.: Quantitative reliability analysis of different design alternatives for steer-by-wire system. Reliab. Eng. Syst. Saf. 89(3), 241–247 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Bergmiller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bergmiller, P. (2013). Design and Safety Analysis of a Drive-by-Wire Vehicle. In: Maurer, M., Winner, H. (eds) Automotive Systems Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36455-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36455-6_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36454-9

  • Online ISBN: 978-3-642-36455-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics