Skip to main content

Systems Phenomics

  • Chapter
  • First Online:
Population Neuroscience
  • 1325 Accesses

Abstract

The molecular machinery described in the preceding three chapters represents both the blueprint (genes) and the mechanics (epigenetics, transcriptomics, proteomics) for the emergence of system-level phenotypes: the functional and structural properties of the human brain. As with any other biological system in our bodies, brain phenotypes arise from a combination of genetic and environmental influences, which are expressed via multiple molecular pathways throughout our lives. Ultimately, inter-individual variability in these structural and functional brain properties underlies differences between individuals in their behavioural traits. In this chapter, we will focus on the use of magnetic resonance imaging (MRI) for quantifying brain phenotypes. We will start with a few general comments about functional and structural brain imaging, explain the basic principles of MRI and then move on to describe various ways in which we can measure structural and functional brain phenotypes. Given our interest in the ultimate “product” of our brains, namely behaviour, we will also provide a brief overview of tools suitable for out-of-scanner assessment of cognitive abilities and mental health in population-based imaging studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We use the term “behaviour” in a broad sense, encompassing not only observable actions but also cognition, emotions and mental health.

  2. 2.

    Voxel (or volumetric pixel) is a volume element of the (3D) MR image (pixels refer to picture elements of (2D) video images).

  3. 3.

    1.5 T equals 15,000 Gauss. For comparison, the Earth’s magnetic field is about 0.5 Gauss.

  4. 4.

    For hydrogen, this “resonant” frequency is about 64 MHz at 1.5 T.

  5. 5.

    The switching of the gradient coils generates the knocking noise heard during scanning.

  6. 6.

    Proton density refers to the number of hydrogen nuclei per unit of tissue volume.

  7. 7.

    Lattice is an array of points repeating periodically in three dimensions.

  8. 8.

    Individual hydrogen nuclei precess at slightly different rates, leading to their magnetic moments eventually pointing in different directions (“dephasing”).

  9. 9.

    MT imaging is used most often in patients with neurological disorders affecting white matter, such as multiple sclerosis (Filippi and Rocca 2007).

  10. 10.

    Let me explain the reason for quotation marks here. As pointed out in this section, it is unlikely that the BOLD signal reflects neural activity understood as neurons generating action potentials, that is, firing. For this reason, the term “activation” can be used only as a metaphor. For this reason, we prefer to use terms—such as “BOLD response” or “fMRI response”—that do not imply a particular neurophysiological process.

  11. 11.

    A vertex is a corner point of a polygon; polygons constitute a representation of a (cortical) surface.

  12. 12.

    The “prior” is shorthand for “a prior probability distribution”. In this context, the priors bring existing knowledge to assist a particular classification algorithm.

  13. 13.

    The target is usually a population average generated in a standardized (atlas) space.

  14. 14.

    The standard Hotelling T2 test is used to detect and characterize such differences (Davatzikos et al. 1996; Thompson and Toga 1997).

  15. 15.

    The Jacobian is the determinant of the Jacobian matrix, which characterizes spatial relationships between vectors in (the three-dimensional) Euclidean space.

  16. 16.

    Typically, one uses a standard two-sample t test of the log-Jacobian values to identify areas of significant local difference in volume between two populations.

  17. 17.

    Typically, we use r = 20 mm but our findings remain the same for r = 15 mm or r = 25 mm (Toro et al. 2008a).

  18. 18.

    Note that we are not interested here in the repeatability of average (group) “activation” maps.

  19. 19.

    The most common type of ICC used in this context is the third ICC (Shrout and Fleiss 1979).

  20. 20.

    The magnitude of the BOLD response is typically assessed in a particular contrast (difference) between two conditions.

  21. 21.

    Test–retest reliability: poor—ICCs <0.4; fair—0.4–0.75; excellent—>0.75 (Fleiss 1986).

References

  • Achenbach T, Rescorla LA (2003) Manual for the ASEBA adult forms and profiles. University of Vermont, Research Center for Children, Youth, and Families, Burlington

    Google Scholar 

  • Akgoren N, Dalgaard P, Lauritzen M (1996) Cerebral blood flow increases evoked by electrical stimulation of rat cerebellar cortex: relation to excitatory synaptic activity and nitric oxide synthesis. Brain Res 710 (1–2):204–214. doi:0006-8993(95)01354-7 [pii]

    Google Scholar 

  • Anblagan D, Jones NW, Costigan C, Parker AJJ, Allcock K, Aleong R, Coyne L, Deshpande R, Raine Fenning N, Bugg G, Roberts N, Pausova Z, Paus T, Gowland PA. Maternal Smoking during Pregnancy and Fetal Organ Growth: a Magnetic Resonance Imaging Study (unpublished observation)

    Google Scholar 

  • Ashburner J, Friston KJ (2000) Voxel-based morphometry—the methods. NeuroImage 11(6 Pt 1):805–821

    Article  PubMed  CAS  Google Scholar 

  • Aron AR, Gluck MA, Poldrack RA (2006) Long-term test-retest reliability of functional MRI in a classification learning task. Neuroimage 29(3):1000–1006. doi:S1053-8119(05)00598-7 [pii] 10.1016/j.neuroimage.2005.08.010

    Google Scholar 

  • Caceres A, Hall DL, Zelaya FO, Williams SC, Mehta MA (2009) Measuring fMRI reliability with the intra-class correlation coefficient. Neuroimage 45(3):758–768. doi:S1053-8119(08)01327-X [pii] 10.1016/j.neuroimage.2008.12.035

    Google Scholar 

  • Chung MK, Worsley KJ, Paus T, Cherif C, Collins DL, Giedd JN et al (2001) A unified statistical approach to deformation-based morphometry. NeuroImage 14(3):595–606

    Article  PubMed  CAS  Google Scholar 

  • Chupin M, Hammers A, Bardinet E, Colliot O, Liu RS, Duncan JS, Garnero L, Lemieux L (2007) Fully automatic segmentation of the hippocampus and the amygdala from MRI using hybrid prior knowledge. Med Image Comput Assist Interv 10(Pt 1):875–882

    Google Scholar 

  • Cocosco CA, Zijdenbos AP, Evans AC (2003) A fully automatic and robust brain MRI tissue classification method. Med Image Anal 7(4):513–527

    Article  PubMed  Google Scholar 

  • Collins DL, Neelin P, Peters TM, Evans AC (1994) Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. J Comput Assist Tomo 18(2):192–205

    Google Scholar 

  • Collins D, Holmes C, Peters T, Evans A (1995) Automatic 3-D model-based neuroanatomical segmentation. Hum Brain Mapp 3:190–208

    Article  Google Scholar 

  • Davatzikos C, Vaillant M, Resnick SM, Prince JL, Letovsky S, Bryan RN (1996) A computerized approach for morphological analysis of the corpus callosum. J Comput Assist Tomo 20(1):88–97

    Google Scholar 

  • Deoni SC, Rutt BK, Arun T, Pierpaoli C, Jones DK (2008) Gleaning multicomponent T1 and T2 information from steady-state imaging data. Magn Reson Med 60(6):1372–1387. doi:10.1002/mrm.21704

    Article  PubMed  Google Scholar 

  • Destrieux C, Fischl B, Dale A, Halgren E (2010) Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. Neuroimage 53(1):1–15. doi:S1053-8119(10)00854-2 [pii] 10.1016/j.neuroimage.2010.06.010

    Google Scholar 

  • Draganski B, Gaser C, Busch V, Schuierer G, Bogdahn U, May A (2004) Neuroplasticity: changes in grey matter induced by training. Nature 427(6972):311–312

    Article  PubMed  CAS  Google Scholar 

  • Evans A, Collins D, Mills S (1993) 3D statistical neuroanatomical models from 305 MRI volumes. Nuclear Science Symposium and Medical Imaging Conference, San Francisco, p 1813–1817

    Google Scholar 

  • Filippi M, Rocca MA (2007) Magnetization transfer magnetic resonance imaging of the brain, spinal cord, and optic nerve. Neurotherapeutics 4(3):401–413

    Article  PubMed  Google Scholar 

  • Fischl B, Dale AM (2000) Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci USA 97(20):11050–11055

    Article  PubMed  CAS  Google Scholar 

  • Fischl B, Sereno MI, Tootell RB, Dale AM (1999) High-resolution intersubject averaging and a coordinate system for the cortical surface. Hum Brain Mapp 8(4):272–284. doi:10.1002/(SICI)1097-0193(1999)8:4<272::AID-HBM10>3.0.CO;2-4 [pii]

    Google Scholar 

  • Fleiss JL (1986) The design and analysis of clinical experiments. Wiley, New York

    Google Scholar 

  • Hampshire A, Highfield R, Parkin B, Owen AM (2011) Fractionating human intelligence (submitted)

    Google Scholar 

  • Heeger DJ, Huk AC, Geisler WS, Albrecht DG (2000) Spikes versus BOLD: what does neuroimaging tell us about neuronal activity? Nat Neurosci 3(7):631–633. doi:10.1038/76572

    Article  PubMed  CAS  Google Scholar 

  • Iadecola C (1993) Regulation of the cerebral microcirculation during neural activity: is nitric oxide the missing link? Trends Neurosci 16(6):206–214

    Article  PubMed  CAS  Google Scholar 

  • Kessler RC, Wang PS (2008) The descriptive epidemiology of commonly occurring mental disorders in the United States. Annu Rev Public Health 29:115–129. doi:10.1146/annurev.publhealth.29.020907.090847

    Article  PubMed  Google Scholar 

  • Koolschijn PC, Schel MA, de Rooij M, Rombouts SA, Crone EA (2011) A three-year longitudinal functional magnetic resonance imaging study of performance monitoring and test-retest reliability from childhood to early adulthood. J Neurosci 31(11):4204–4212

    Article  PubMed  CAS  Google Scholar 

  • Kucharczyk W, Macdonald PM, Stanisz GJ, Henkelman RM (1994) Relaxivity and magnetization transfer of white matter lipids at MR imaging: importance of cerebrosides and pH. Radiology 192(2):521–529

    PubMed  CAS  Google Scholar 

  • Le Bihan D, Basser PJ (1995) Molecular diffusion and nuclear magnetic resonance. In: LeBihan D (ed) Diffusion and perfusion magnetic resonance imaging. Raven Press, New York, p 5–17

    Google Scholar 

  • Logothetis NK, Wandell BA (2004) Interpreting the BOLD signal. Annu Rev Physiol 66:735–769. doi:10.1146/annurev.physiol.66.082602.092845

    Article  PubMed  CAS  Google Scholar 

  • Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412(6843):150–157. doi:10.1038/35084005 35084005 [pii]

    Google Scholar 

  • Lucas CP, Zhang H, Fisher PW, Shaffer D, Regier DA, Narrow WE, Bourdon K, Dulcan MK, Canino G, Rubio-Stipec M, Lahey BB, Friman P (2001) The DISC predictive scales (DPS): efficiently screening for diagnoses. J Am Acad Child Adolesc Psychiatry 40(4):443–449

    Article  PubMed  CAS  Google Scholar 

  • Madler B, Drabycz SA, Kolind SH, Whittall KP, MacKay AL (2008) Is diffusion anisotropy an accurate monitor of myelination? Correlation of multicomponent T2 relaxation and diffusion tensor anisotropy in human brain. Magn Reson Imaging 26(7):874–888. doi:10.1016/j.mri.2008.01.047 S0730-725X(08)00083-0 [pii]

    Article  PubMed  Google Scholar 

  • Mathiesen C, Caesar K, Akgoren N, Lauritzen M (1998) Modification of activity-dependent increases of cerebral blood flow by excitatory synaptic activity and spikes in rat cerebellar cortex. J Physiol 512(Pt 2):555–566

    Article  PubMed  CAS  Google Scholar 

  • McGowan JC (1999) The physical basis of magnetization transfer imaging. Neurology 53(5 Suppl 3):S3–7

    PubMed  CAS  Google Scholar 

  • Moore CI, Sheth, B, Basu A, Nelson S, Sur M (1996) What is the neural correlate of the optical imaging signal? Intracellular receptive field maps and optical imaging in rat barrel cortex. Soc Neurosci

    Google Scholar 

  • Moore CI, Nelson SB, Sur M (1999) Dynamics of neuronal processing in rat somatosensory cortex. Trends Neurosci 22(11):513–520. doi:S0166-2236(99)01452-6

    Article  PubMed  CAS  Google Scholar 

  • Nawaz-Khan I, Qiu N, Leonard G, Perron M, Pike GB, Richer L, Veillette S, Ferguson E, Pausova Z, Paus T. Validation of FreeSurfer-based volumetric estimates of the corpus callosum (unpublished observation)

    Google Scholar 

  • Northington FJ, Matherne GP, Berne RM (1992) Competitive inhibition of nitric oxide synthase prevents the cortical hyperemia associated with peripheral nerve stimulation. Proc Natl Acad Sci U S A 89(14):6649–6652

    Article  PubMed  CAS  Google Scholar 

  • Owen AM, Hampshire A, Grahn JA, Stenton R, Dajani S, Burns AS, Howard RJ, Ballard CG (2012) Putting brain training to the test. Nature 465(7299):775–778. doi:10.1038/nature09042 (nature09042)

    Google Scholar 

  • Paus T (2005) Mapping brain maturation and cognitive development during adolescence. Trends Cogn Sci 9(2):60–68

    Article  PubMed  Google Scholar 

  • Paus T (2010) Population neuroscience: why and how. Hum Brain Mapp 31(6):891–903

    Article  PubMed  Google Scholar 

  • Paus T, Marrett S, Worsley KJ, Evans AC (1995) Extraretinal modulation of cerebral blood flow in the human visual cortex: implications for saccadic suppression. J Neurophysiol 74(5):2179–2183

    PubMed  CAS  Google Scholar 

  • Paus T, Collins DL, Evans AC, Leonard G, Pike B, Zijdenbos A (2001) Maturation of white matter in the human brain: a review of magnetic resonance studies. Brain Research Bulletin 54(3):255–266

    Article  PubMed  CAS  Google Scholar 

  • Paus T, Bernard M, Chakravarty MM, Davey Smith G, Gillis J, Lourdusamy A, Melka MG, Leonard G, Pavlidis P, Perron M, Pike GB, Richer L, Schumann G, Timpson N, Toro R, Veillette S, Pausova Z (2012) KCTD8 gene and brain growth in adverse intrauterine environment: a genome-wide association study. Cereb Cortex 22(11):2634–2642

    Google Scholar 

  • Pausova Z, Paus T, Abrahamowicz M, Almerigi J, Arbour N, Bernard M, Gaudet D, Hanzalek P, Hamet P, Evans AC, Kramer M, Laberge L, Leal S, Leonard G, Lerner J, Lerner RM, Mathieu J, Perron M, Pike B, Pitiot A, Richer L, Seguin JR, Syme C, Toro R, Tremblay RE, Veillette S, Watkins K (2007) Genes, maternal smoking, and the offspring brain and body during adolescence: design of the Saguenay youth study. Hum Brain Mapp 28(6):502–518

    Article  PubMed  Google Scholar 

  • Pike GB (1996) Pulsed magnetization transfer contrast in gradient echo imaging: a two-pool analytic description of signal response. Magn Reson Med 36(1):95–103

    Article  PubMed  CAS  Google Scholar 

  • Plichta MM, Schwarz AJ, Grimm O, Morgen K, Mier D, Haddad L, Gerdes AB, Sauer C, Tost H, Esslinger C, Colman P, Wilson F, Kirsch P, Meyer-Lindenberg A (2012) Test-retest reliability of evoked BOLD signals from a cognitive-emotive fMRI test battery. Neuroimage 60(3):1746–1758

    Article  PubMed  Google Scholar 

  • Raemaekers M, du Plessis S, Ramsey NF, Weusten JM, Vink M (2012) Test-retest variability underlying fMRI measurements. Neuroimage 60(1):717–727. doi:10.1016/j.neuroimage.2011.11.061 S1053-8119(11)01343-7 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Rees G, Friston K, Koch C (2000) A direct quantitative relationship between the functional properties of human and macaque V5. Nat Neurosci 3(7):716–723. doi:10.1038/76673

    Article  PubMed  CAS  Google Scholar 

  • Roberts TP, Mikulis D (2007) Neuro MR: principles. J Magn Reson Imaging 26(4):823–837. doi:10.1002/jmri.21029

    Article  PubMed  Google Scholar 

  • Rueckert D, Sonoda LI, Hayes C, Hill DL, Leach MO, Hawkes DJ (1999) Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans Med Imaging 18(8):712–721

    Article  PubMed  CAS  Google Scholar 

  • Schmierer K, Scaravilli F, Altmann DR, Barker GJ, Miller DH (2004) Magnetization transfer ratio and myelin in postmortem multiple sclerosis brain. Ann Neurol 56(3):407–415

    Article  PubMed  Google Scholar 

  • Schmierer K, Wheeler-Kingshott CA, Tozer DJ, Boulby PA, Parkes HG, Yousry TA, Scaravilli F, Barker GJ, Tofts PS, Miller DH (2008) Quantitative magnetic resonance of postmortem multiple sclerosis brain before and after fixation. Magn Reson Med 59(2):268–277. doi:10.1002/mrm.21487

    Article  PubMed  Google Scholar 

  • Sheehan DV, Lecrubier Y, Sheehan KH, Amorim P, Janavs J, Weiller E, Hergueta T, Baker R, Dunbar GC (1998) The Mini-International Neuropsychiatric Interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J Clin Psychiatry 59(20):22–33 quiz 34-57

    PubMed  Google Scholar 

  • Sheehan DV, Sheehan KH, Shytle RD, Janavs J, Bannon Y, Rogers JE, Milo KM, Stock SL, Wilkinson B (2010) Reliability and validity of the Mini International Neuropsychiatric Interview for Children and Adolescents (MINI-KID). J Clin Psychiatry 71(3):313–326. doi:10.4088/JCP.09m05305whi

    Article  PubMed  Google Scholar 

  • Shrout PE, Fleiss JL (1979) Intraclass correlations: uses in assessing rater reliability. Psychol Bull 86(2):420–428

    Article  PubMed  CAS  Google Scholar 

  • Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE et al (2006) Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. NeuroImage 31:1487–1505

    Article  PubMed  Google Scholar 

  • Thompson PM, Toga AW (1997) Detection, visualization and animation of abnormal anatomic structure with a deformable probabilistic brain atlas based on random vector field transformations. Med Image Anal 1(4):271–294

    Article  PubMed  CAS  Google Scholar 

  • Thompson PM, Giedd JN, Woods RP, MacDonald D, Evans AC, Toga AW (2000) Growth patterns in the developing brain detected by using continuum mechanical tensor maps. Nature 404(6774):190–193

    Article  PubMed  CAS  Google Scholar 

  • Toro R, Fox PT, Paus T (2008a) Functional coactivation map of the human brain. Cereb Cortex 18(11):2553–2559

    Article  PubMed  Google Scholar 

  • Toro R, Perron M, Pike B, Richer L, Veillette S, Pausova Z, Paus T (2008b) Brain size and folding of the human cerebral cortex. Cereb Cortex 18(10):2352–2357

    Article  PubMed  Google Scholar 

  • Toro R, Chupin M, Garnero L, Leonard G, Perron M, Pike B, Pitiot A, Richer L, Veillette S, Pausova Z, Paus T (2009) Brain volumes and Val66Met polymorphism of the BDNF gene: local or global effects? Brain Struct Funct 213(6):501–509

    Google Scholar 

  • Upadhyay J, Hallock K, Ducros M, Kim DS, Ronen I (2008) Diffusion tensor spectroscopy and imaging of the arcuate fasciculus. Neuroimage 39(1):1–9. doi:10.1016/j.neuroimage.2007.08.046 S1053-8119(07)00775-6 [pii]

    Article  PubMed  Google Scholar 

  • Zijdenbos AP, Forghani R, Evans AC (2002) Automatic “pipeline” analysis of 3-D MRI data for clinical trials: application to multiple sclerosis. IEEE Trans Med Imaging 21(10):1280–1291

    Article  PubMed  Google Scholar 

  • Zilles K, Armstrong E, Schleicher A, Kretschmann HJ (1988) The human pattern of gyrification in the cerebral cortex. Anat Embryol (Berl) 179(2):173–179

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomáš Paus .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Paus, T. (2013). Systems Phenomics. In: Population Neuroscience. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36450-1_7

Download citation

Publish with us

Policies and ethics