Skip to main content

Epigenomics

  • Chapter
  • First Online:
Population Neuroscience
  • 1286 Accesses

Abstract

Not all genes are expressed in all tissues at all times. While many molecular mechanisms regulating gene expression (in space and over time) are coded in the DNA sequence (e.g. enhancers, repressors, transcription factors), there is a number of so-called epigenetic mechanisms that can regulate gene expression by other means. In this chapter, we will first review the basics of epigenetics and then describe the two most common epigenetic mechanisms, DNA methylation and histone modification. We will conclude by touching upon a few issues relevant to the integration of genomic and epigenomic information in population-based studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Gametogenesis refers to the production of gametes (eggs and sperm) in gonads, through meiosis (see Sect. 4.1.)

  2. 2.

    Epialleles differ in their epigenetic modifications (whereas alleles differ in nucleotides).

  3. 3.

    Retrotransposon is a form of the transposable elements that first copy themselves from DNA to RNA (transcription), then back to DNA (reversed transcription), before inserting themselves into the genome in a new position. In this way, they generate insertions, deletions and translocations.

  4. 4.

    Note the nomenclature: CG refers to cytosine located on one DNA strand and guanine on the other (complementary) strand. On the other hand, CpG refers to the two nucleotides being located side by side on the same DNA strand.

  5. 5.

    Methyl-CpG binding-domain proteins.

  6. 6.

    Acetylation, methylation, phosphorylation, sumoylation and ubiquitylation.

  7. 7.

    For example, trimethylation of lysine 27 in H3 histone (H3K27me3) is associated with gene silencing (e.g. Soshnikova and Duboule 2008). As described above, deficiencies in another of the histone-trimethylation complexes (H3K4me3) influence the lifespan of C. elegans and that epigenetic modifications (demethylation) of this complex, when located in the vicinity of certain genes, are transmitted across four generations, together with the phenotype. In other words, it influences expression of these genes and longevity (Greer et al. 2011).

  8. 8.

    The often-quoted examples of a trans-generational effect of food availability on reproduction, health and mortality, such as the Dutch Hunger Winter (Roseboom et al. 2011) and the Overkalix cohort in Northern Sweden (Pembrey et al. 2006), involve only three generations.

References

  • Daxinger L, Whitelaw E (2012) Understanding transgenerational epigenetic inheritance via the gametes in mammals. Nat Rev Genet 13(3):153–162

    Google Scholar 

  • Dolinoy DC, Weinhouse C, Jones TR, Rozek LS, Jirtle RL (2010) Variable histone modifications at the A(vy) metastable epiallele. Epigenetics 5(7):637–644

    Article  PubMed  CAS  Google Scholar 

  • Faulk C, Dolinoy DC (2011) Timing is everything: the when and how of environmentally induced changes in the epigenome of animals. Epigenetics 6(7):791–797

    Article  PubMed  CAS  Google Scholar 

  • Greer EL, Maures TJ, Ucar D, Hauswirth AG, Mancini E, Lim JP, Benayoun BA, Shi Y, Brunet A (2011) Transgenerational epigenetic inheritance of longevity in Caenorhabditis elegans. Nat 479(7373):365–371. doi:10.1038/nature10572

    Article  CAS  Google Scholar 

  • Gregg C, Zhang J, Weissbourd B, Luo S, Schroth GP, Haig D, Dulac C (2010) High-resolution analysis of parent-of-origin allelic expression in the mouse brain. Sci 329(5992):643–648. doi:10.1126/science.1190830

    Article  CAS  Google Scholar 

  • Henckel A, Arnaud P (2010) Genome-wide identification of new imprinted genes. Brief Funct Genomics 9(4):304–314. doi:10.1093/bfgp/elq016

    Article  PubMed  CAS  Google Scholar 

  • Hjelmeland LM (2011) Dark matters in AMD genetics: epigenetics and stochasticity. Invest Ophthalmol Vis Sci 52(3):1622–1631. doi:10.1167/iovs.10-6765

    Article  PubMed  CAS  Google Scholar 

  • Kuroda A, Rauch TA, Todorov I, Ku HT, Al-Abdullah IH, Kandeel F, Mullen Y, Pfeifer GP, Ferreri K (2009) Insulin gene expression is regulated by DNA methylation. PLoS One 4(9):e6953. doi:10.1371/journal.pone.0006953

    Article  PubMed  Google Scholar 

  • Lamarck JB (1809) Philosophie zoologique: ou Exposition des considérations relative à l’histoire naturelle des animaux. In. Dentu et L’Auteur, Paris

    Google Scholar 

  • Lotfipour S, Ferguson E, Leonard G, Perron M, Pike B, Richer L, Seguin JR, Toro R, Veillette S, Pausova Z, Paus T (2009) Orbitofrontal cortex and drug use during adolescence: role of prenatal exposure to maternal smoking and BDNF genotype. Arch Gen Psychiatry 66(11):1244–1252

    Article  PubMed  Google Scholar 

  • McGowan PO, Sasaki A, D’Alessio AC, Dymov S, Labonte B, Szyf M, Turecki G, Meaney MJ (2009) Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nat Neurosci 12(3):342–348. doi:10.1038/nn.2270

    Article  PubMed  CAS  Google Scholar 

  • Morgan HD, Sutherland HG, Martin DI, Whitelaw E (1999) Epigenetic inheritance at the agouti locus in the mouse. Nat Genet 23(3):314–318. doi:10.1038/15490

    Article  PubMed  CAS  Google Scholar 

  • Pembrey ME, Bygren LO, Kaati G, Edvinsson S, Northstone K, Sjostrom M, Golding J (2006) Sex-specific, male-line transgenerational responses in humans. Eur J Hum Genet 14(2):159–166. doi:5201538 [pii] 10.1038/sj.ejhg.5201538

    Google Scholar 

  • Portela A, Esteller M (2010) Epigenetic modifications and human disease. Nat Biotechnol 28(10):1057–1068. doi:10.1038/nbt.1685

    Article  PubMed  CAS  Google Scholar 

  • Rakyan VK, Down TA, Balding DJ, Beck S (2011) Epigenome-wide association studies for common human diseases. Nat Rev Genet 12(8):529–541. doi:10.1038/nrg3000

    Article  PubMed  CAS  Google Scholar 

  • Riddick G, Fine HA (2011) Integration and analysis of genome-scale data from gliomas. Nat rev Neurol 7(8):439–450. doi:10.1038/nrneurol.2011.100

    Article  PubMed  CAS  Google Scholar 

  • Roseboom TJ, Painter RC, van Abeelen AF, Veenendaal MV, de Rooij SR (2011) Hungry in the womb: what are the consequences? Lessons from the Dutch famine. Maturitas 70(2):141–145. doi:10.1016/j.maturitas.2011.06.017

    Article  PubMed  Google Scholar 

  • Soshnikova N, Duboule D (2008) Epigenetic regulation of Hox gene activation: the waltz of methyls. BioEssays News Rev Mol Cell Dev Bio 30(3):199–202. doi:10.1002/bies.20724

    Article  CAS  Google Scholar 

  • Toledo-Rodriguez M, Lotfipour S, Leonard G, Perron M, Richer L, Veillette S, Pausova Z, Paus T (2010) Maternal smoking during pregnancy is associated with epigenetic modifications of the brain-derived neurotrophic factor-6 exon in adolescent offspring. Am J Med Genet B Neuro psychiatr Genet

    Google Scholar 

  • Zhang TY, Labonte B, Wen XL, Turecki G, Meaney MJ (2013) Epigenetic mechanisms for the early environmental regulation of hippocampal glucocorticoid receptor gene expression in rodents and humans. Neuro Psycho Pharmacol 38(1):111–123. doi:10.1038/npp.2012.149

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomáš Paus .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Paus, T. (2013). Epigenomics. In: Population Neuroscience. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36450-1_5

Download citation

Publish with us

Policies and ethics