Skip to main content

Mass and Gravity

  • Chapter
Balances

Abstract

The book starts with a survey on the development of the concept ‘mass’ and of theories of gravity, beginning with Greek’s ideas on mass, Galileo’s experiments, Newton’s laws and their extension by Einstein’s theory of relativity. Data from measurements of the gravitational force on Sun, planets and the Moon are presented. Kepler’s laws on moving masses in the gravitational field are discussed as well as new discoveries on the expansion of the universe. Fundamental interactions of particles and particle/wave duality are described. The Theory of Everything is mentioned. The definition of the international unit of mass is reported as well as alternatives like watt or voltage balance, counting of atoms using Avogadro’s number. Alternatives like natural Planck units are mentioned. Mass units, atomic mass units and examples of masses in nature as well as conversion factors are given in tables.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. I. Newton, Philosophiae Naturalis Principia Mathematica (London, 1687)

    Google Scholar 

  2. I. Newton, The Principia: Mathematical Principles of Natural Philosophy Trans. I (University of California Press, Berkeley, 1999)

    Google Scholar 

  3. J.W.v. Goethe, F. Schiller, Xenien. Schillers Musenalmanach (1797)

    Google Scholar 

  4. E. Pritchard (ed.), Measurement of Mass (Royal Society of Chemistry, Cambridge, 2003). (brochure with CD)

    Google Scholar 

  5. H.R. Jenemann, The development of the determination of mass, in Comprehensive Mass Metrology, ed. by M. Kochsiek, M. Gläser (Wiley/VCH, Berlin, 2000), pp. 119–163

    Google Scholar 

  6. M. Gläser, The concept of mass, in Comprehensive Mass Metrology, ed. by M. Kochsiek, M. Gläser (Wiley/VCH, Berlin, 2000), pp. 16–47

    Google Scholar 

  7. W. Capelle, Die Vorsokratiker. Die Fragmente und Quellenberichte (Kröner, Stuttgart, 1968)

    Google Scholar 

  8. Bible, Genesis, in Bible, p. 22

    Google Scholar 

  9. M. Jammer, Der Begriff der Masse in der Physik (Wissenschaftliche Buchgesellschaft, Darmstadt, 1974)

    Google Scholar 

  10. A.L. de Lavoisier, Traité élémentaire de Chimie (Paris, 1789)

    Google Scholar 

  11. J. Dalton, W.H. Wollaston, Die Grundlagen der Atomtheorie (Akademische Verlagsgesellschaft Geest & Portig, Leipzig, 1983)

    Google Scholar 

  12. H. Bondi, Negative mass in general relativity. Rev. Mod. Phys. 29, 423–428 (1957)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. A. Einstein, Zur Elektrodynamik bewegter Körper. Ann. Phys. 17, 891–921 (1905)

    Article  MATH  Google Scholar 

  14. N. Bakalis, Handbook of Greek Philosophy: From Thales to the Stoics: Analysis and Fragments (Trafford Publishing, 2005)

    Google Scholar 

  15. Wikipedia, Democritus. http://en.wikipedia.org/wiki/Democritus (2009)

  16. M. Kochsiek, M. Gläser (eds.), Comprehensive Mass Metrology (Wiley/VCH, Berlin, 2000)

    Google Scholar 

  17. M. Kochsiek (ed.), Handbuch des Wägens, 2nd edn. (Vieweg, Braunschweig, 1985)

    Google Scholar 

  18. W. Stukeley, Memoirs of Sir Isaac Newtons Life (Royal Society, London, 1752)

    Google Scholar 

  19. M. Engel, Die Gravitation im Test – Gravitationskonstante und Äquivalenzprinzip. http://www.pi5.uni-stuttgart.de/lehre/hauptseminar2001/Gravitationskonstante/Gravitation_2ndversion.htm, (2002).

  20. P.J. Mohr, B.N. Taylor, D.B. Newell, CODATA recommended values of the fundamental physical constants: 2006. Rev. Mod. Phys. 80, 633–730 (2008)

    Article  ADS  Google Scholar 

  21. CODATA, The Committee on Data for Science and Technology, 5 rue Auguste Vacquerie, F-75016 Paris, France. http://www.codata.org/ (2010)

  22. O.V. Karagioz, V.P. Izmailov, Izmer. Tekh. 39(10), 3 (1996)

    Google Scholar 

  23. O.V. Karagioz, V.P. Izmailov, Meas. Tech. 39, 979 (1996)

    Article  Google Scholar 

  24. C.H. Bagley, G.G. Luther, Phys. Rev. Lett. 78, 3047 (1997)

    Article  ADS  Google Scholar 

  25. J.H. Gundlach, S.M. Merkowitz, Measurement of Newton’s constant using a torsion balance with angular acceleration feedback. Phys. Rev. Lett. 85, 2869 (2000)

    Article  ADS  Google Scholar 

  26. T.J. Quinn et al., Phys. Rev. Lett. 87, 111101 (2001)

    Article  ADS  Google Scholar 

  27. U. Kleinevoß, Bestimmung der Newtonschen Gravitationskonstanten G (Universität Wuppertal, Wuppertal, 2002)

    Google Scholar 

  28. T.R. Armstrong, M.P. Fitzgerald, Phys. Rev. Lett. 91, 201101 (2003)

    Article  ADS  Google Scholar 

  29. Z.-K. Hu, J.-Q. Guo, J. Luo, Phys. Rev. D71, 127505 (2005)

    ADS  Google Scholar 

  30. S. Schlamminger et al., Phys. Rev. D74, 082001 (2006)

    ADS  Google Scholar 

  31. Aristoteles, a.t., ed., Questiones mechanicae, in Kleine Schriften zur Physik und Metaphysik, ed. by P. Gohlke (Paderborn 1957)

    Google Scholar 

  32. Gravitation. http://en.wikipedia.org/wiki/Gravitation (2007)

  33. Galileo Galilei. http://en.wikipedia.org/wiki/Galileo_Galilei; http://de.wikipedia.org/wiki/Galileo_Galilei (2006)

  34. G. Galilei, De motu antiquiora (Pisa, 1890)

    Google Scholar 

  35. A. Mudry, Galileo Galilei: Schriften-Briefe-Dokumente 1586–1638 (Rütten & Loening, Berlin, 1985)

    Google Scholar 

  36. G. Galilei, Theoremata circa centrum gravitatis solidorum (Pisa, 1585/86)

    Google Scholar 

  37. G. Galilei, La Bilancetta (Pisa, 1588)

    Google Scholar 

  38. A. Einstein, Die Grundlagen der allgemeinen Relativitätstheorie. Ann. Phys. 49, 769–822 (1916)

    Article  MATH  Google Scholar 

  39. Equivalence principle. http://en.wikipedia.org/wiki/Equivalence_principle (2007)

  40. G. Sauerbrey, Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Z. Phys. 155, 206–222 (1959)

    Article  ADS  Google Scholar 

  41. E. Robens, V.M. Mecea, In memoriam prof. dr. Günter Sauerbrey. J. Therm. Anal. Calorim. 86, 7 (2006)

    Article  Google Scholar 

  42. G. Dragoni, G. Maltese, La misure di massa de Quirino Majorana nella ricerca sull’absorbimento della gravità, in La Massa e la Sua Misura—Mass and Its Measurement, ed. by L. Grossi (CLUEB, Bologna, 1995), pp. 66–72

    Google Scholar 

  43. Wikipedia, Earth’s gravity. http://en.wikipedia.org/wiki/Earth%27s_gravity (2010)

  44. A. Lindau, Gravity Information System of PTB. http://www.ptb.de/cartoweb3/SISproject.php (2007), Physikalisch-Technische Bundesanstalt, Braunschweig

  45. T. de Brahe, Opera Omnia. Sive astronomiae instauratae progymnasmata. In duas partes distributa, quorum prima de restitutione motuum (Olms, Frankfurt/Hildesheim, 1648/2001)

    Google Scholar 

  46. J. Kepler, Astronomia Nova, in Bibliothek des verloren gegangenen Wissens, vol. 58, ed. by F. Krafft (Marixverlag, 1609/2005)

    Google Scholar 

  47. J. Kepler, in Harmonices Mundi libri V, ed. by F. Krafft (Marixverlag, 1619/2005)

    Google Scholar 

  48. J. Kepler, Epitome Astronomiae Copernicanae (Frankfurt, 1609)

    Google Scholar 

  49. A.A. Michelson, E.W. Morley, On the relative motion of the Earth and the luminiferous ether. Am. J. Sci. 34(208), 333–345 (1887)

    Article  Google Scholar 

  50. A. Einstein, Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig? Ann. Phys. 18, 639–641 (1905)

    Article  Google Scholar 

  51. A.M. Schwartz, Novel equivalence principle tests. http://www.mazepath.com/uncleal/eotvos.htm (2007)

  52. S. Vitale et al., The science case for LISA Pathfinder, vol. 1 pp. 1–25 (ESA-SCI, 2007)

    Google Scholar 

  53. Wikipedia, Lorentz covariance. http://en.wikipedia.org/wiki/Lorentz_covariance (2010)

  54. B. Haisch, A. Rueda, H.E. Puthoff, Inertia as a zero-point field Lorentz force. Phys. Rev. A 49(2), 678–694 (1994)

    Article  ADS  Google Scholar 

  55. I. Ciufolini, J.A. Wheeler, in Gravitation and Inertia, ed. by P.W. Anderson, A.S. Wightman, S.B. Treiman (Princeton University Press, Princeton, 1995)

    Google Scholar 

  56. J. Philoponus, Corollaries on Place and Void (Cornell University Press, Ithaca, 1987)

    Google Scholar 

  57. S. Stevin, De Beghinselen der Weeghconst (Principles of the Art of Weighing) (Leyden, 1586)

    Google Scholar 

  58. E.J. Dijksterhuis, The Principal Works of Simon Stevin (Swets & Zeitlinger, Amsterdam, 1955)

    Google Scholar 

  59. G. Galilei, Sidereus Nuncius (Thomam Baglionum, Venezia, 1609)

    Google Scholar 

  60. F.W. Bessel, Versuche über die Kraft mit welcher die Erde Körper von verschiedener Beschaffenheit anzieht. Ann. Phys. Chem. (Poggendorff) 25, 401 (1832)

    Article  ADS  Google Scholar 

  61. L. Southerns, Proc. R. Soc. Lond. 84, 325 (1910)

    Article  ADS  Google Scholar 

  62. P. Zeeman, Proc. K. Ned. Akad. Wet. 20, 542 (1917)

    Google Scholar 

  63. P. Zeeman, Proc. K. Akad. Amsterdam 20(4), 542 (1918)

    Google Scholar 

  64. L.R.v. Eötvös, D. Pekár, E. Fekete, Beiträge zum Gesetze der Proportionalität von Trägheit und Gravität. Ann. Phys. (Leipz.) 373(9), 11–66 (1922)

    Article  ADS  Google Scholar 

  65. H.H. Potter, Proc. R. Soc. Lond. 104, 588 (1923)

    Article  ADS  Google Scholar 

  66. H.H. Potter, On the proportionality of mass and weight. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 113(765), 731–732 (1927)

    Article  ADS  Google Scholar 

  67. J. Renner, Mat. és természettudományi ertsitö 53, 542 (1935)

    Google Scholar 

  68. P.G. Roll, R. Krotkov, R.H. Dicke, Ann. Phys. (NY) 26, 442 (1964)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  69. V.B. Braginsky, V.I. Panov, Zh. Eksp. Teor. Fiz. 61, 873 (1971)

    Google Scholar 

  70. V.B. Braginsky, V.I. Panov, Sov. Phys. JETP 34(3), 463 (1972)

    ADS  Google Scholar 

  71. I.I. Shapiro, C.C. Counselman III., R.W. King, Verification of the principle of equivalence for massive bodies. Phys. Rev. Lett. 36, 555 (1976)

    Article  ADS  Google Scholar 

  72. G.M. Keiser, J.E. Faller, Eötvös experiment with a fluid fiber. Bull. Am. Phys. Soc. 24, 579 (1979)

    Google Scholar 

  73. T.M. Niebauer, M.P. McHugh, J.E. Faller, Galilean test for the fifth force. Phys. Rev. Lett. 59(6), 609–612 (1987)

    Article  ADS  Google Scholar 

  74. B.R. Heckel et al., Experimental bounds on interactions mediated by ultralow-mass bosons. Phys. Rev. Lett. 63(25), 2705–2708 (1989)

    Article  ADS  Google Scholar 

  75. E.G. Adelberger et al., Testing the equivalence principle in the field of the Earth: particle physics at masses below 1 μeV? Phys. Rev. D 42(10), 3267–3292 (1990)

    Article  ADS  Google Scholar 

  76. S. Baeßler et al., Improved test of the equivalence principle for gravitational self-energy. Phys. Rev. Lett. 83(18), 3585 (1999)

    Article  ADS  Google Scholar 

  77. S. Schlamminger et al., Test of the equivalence principle using a rotating torsion balance. Phys. Rev. Lett. 100(4), 041101 (2008)

    Article  ADS  Google Scholar 

  78. F. Everitt, P. Worden, Satellite Test of the Equivalence Principle (STEP). A Cultural History of Gravity and the Equivalence Principle. http://einstein.stanford.edu/STEP/ (Stanford University, 2010)

  79. B. Knispel, Pulsare mit dem Heimcomputer entdeckt. Spektrum Wiss. 12, 78–82 (2010)

    Google Scholar 

  80. K. Schwarzschild, Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie. Sitzungsber. Preuss. Akad. d. Wiss. (1916), pp. 189–196

    Google Scholar 

  81. K. Schwarzschild, Über das Gravitationsfeld eines Kugel aus inkompressibler Flüssigkeit nach der Einsteinschen Theorie. Sitzungsber. Preuss. Akad. d. Wiss. (1916), pp. 424–434

    Google Scholar 

  82. J. Droste, On the field of a single centre in Einstein’s theory of gravitation. Proc. K. Ned. Akad. Wet. 17(3), 998–1011 (1915)

    MATH  Google Scholar 

  83. P.O. Hess, W. Greiner, Pseudo-complex general relativity. Int. J. Modern Phys. E (2009)

    Google Scholar 

  84. W. Greiner, Es gibt keine schwarzen Löcher – Von Einstein zu Zweistein, in FIAS (Frankfurt am Main, 2010)

    Google Scholar 

  85. Wikipedia, Wave-particle duality. http://en.wikipedia.org/wiki/Wave%E2%80%93particle_duality, (2009)

  86. I. Newton, Optics (London, 1704)

    Google Scholar 

  87. C. Huygens, Traité de la lumière (Leiden, 1690)

    Google Scholar 

  88. J.C. Maxwell, A dynamical theory of the electromagnetic field. Philos. Trans. R. Soc. Lond. 155, 459–512 (1865)

    Article  Google Scholar 

  89. A. Einstein, Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Ann. Phys. 322(6), 132–148 (1905)

    Article  Google Scholar 

  90. A.H. Compton, A quantum theory of the scattering of X-rays by light elements. Phys. Rev. 21(5), 483–502 (1923)

    Article  ADS  Google Scholar 

  91. L.V.P.R. de Broglie, Recherches sur la théorie des quanta (Paris, 1924)

    Google Scholar 

  92. M. Arndt et al., Wave–particle duality of C60. Nature 401, 680–682 (1999)

    Article  ADS  Google Scholar 

  93. Wikipedia, Standard Model. http://en.wikipedia.org/wiki/Standard_Model (2008)

  94. E. Adelberger, B. Heckel, C.D. Hoyle, Testing the gravitational inverse-square law. Phys. World 18, 41–45 (2005)

    Google Scholar 

  95. P. Higgs, Broken symmetries, massless particles and gauge fields. Phys. Lett. 12, 132 (1964)

    Article  ADS  Google Scholar 

  96. P. Higgs, Broken symmetries and the masses of gauge bosons. Phys. Rev. Lett. 13, 508 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  97. P. Higgs, Spontaneous symmetry breakdown without massless bosons. Phys. Rev. 145, 1156 (1966)

    Article  MathSciNet  ADS  Google Scholar 

  98. F. Englert, R. Brout, Broken symmetry and the mass of gauge vector mesons. Phys. Rev. Lett. 13, 321 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  99. G.S. Guralnik, C.R. Hagen, T.W.B. Kibble, Global conservation laws and massless particles. Phys. Rev. Lett. 13, 585 (1964)

    Article  ADS  Google Scholar 

  100. S. Dürr et al., Ab initio determination of light hadron masses. Science 322, 1224 (2008)

    Article  ADS  Google Scholar 

  101. Wikipedia, Theory of everything. http://en.wikipedia.org/wiki/Theory_of_everything (2008)

  102. P.S.d. Laplace, Essai philosophique sur les probabilités. 18, Paris

    Google Scholar 

  103. F. Cardarelli, Encyclopaedia of Scientific Units, Weights and Measures, Their SI Equivalences and Origins (Springer, Heidelberg, 2003)

    Book  Google Scholar 

  104. S.-Y. Lan et al., A clock directly linking time to a particle’s mass. http://www.sciencemag.org/content/ea...cience.1230767, in Science journal. 2013-01-10

  105. T. Funck, V. Sienknecht, Determination of the volt with the improved PTB voltage balance. IEEE Trans. Instrum. Meas. 40, 158–161 (1991)

    Article  Google Scholar 

  106. V. Bego, Determination of the volt by means of voltage balances. Metrologia 25, 127–133 (1988)

    Article  ADS  Google Scholar 

  107. V. Bego et al., Progress in measurement with ETF voltage balances. IEEE Trans. Instrum. Meas. 42, 335–337 (1993)

    Article  Google Scholar 

  108. W.K. Clothier et al., Determination of the volt. Metrologia 26, 9–46 (1989)

    Article  ADS  Google Scholar 

  109. F. Cabiati, Alternative methods for relating electrical to mechanical quantities through a power equation. IEEE Trans. Instrum. Meas. 40, 110–114 (1991)

    Article  ADS  Google Scholar 

  110. J.W.G. Wignall, Proposal for an absolute, atomic definition of mass. Phys. Rev. Lett. 68, 5–8 (1992)

    Article  ADS  Google Scholar 

  111. I. Mills et al., Quantities, Units and Symbols in Physical Chemistry, 2nd edn. (Blackwell Science, Oxford, 1993)

    Google Scholar 

  112. International System of Units. http://en.wikipedia.org/wiki/SI (2006)

  113. E. Göbel, I.M. Mills, A.J. Wallard (eds.), The International System of Units (SI), 8th edn. (Bureau International des Poids et Mesures, Sèvres, 2006)

    Google Scholar 

  114. L. Euler, Disquisitio de Billancibus. Commentari Acadimiae Scientiarium Imperialis Petropolitanae, 1738/1747. 10

    Google Scholar 

  115. J.J. Clement-Mullet, Pesanteur spécifique de divers substances minérales (Excerpt de Ayin-Akbari). J. Asiat. 11, 379–406 (1858)

    Google Scholar 

  116. E. Wiedemann, Über die Kenntnisse der Muslime auf dem Gebiete der Mechanik und Hydrostatik. Arch. Gesch. Nat.wiss. 2, 394–398 (1910)

    Google Scholar 

  117. Al-Chazini, Buch der Waage der Weisheit. 1120, Merw

    Google Scholar 

  118. IUPAC, Quantities, Units and Symbols in Physical Chemistry, 3rd edn. (RSC Publishing, Cambridge, 2007) (prepared by E.R. Cohen et al.)

    Google Scholar 

  119. Council-EEC, Council Directive 80/181/EEC of 20 December 1979 on the approximation of the laws of the Member States relating to units of measurement and on the repeal of Directive 71/354/EEC, as amended with Directive 89/617/EEC (which changed the cutoff date in article 3.2to31December1999) and Directive 1999/103/EC 1979–2006, Brussels, Eur-Lex

    Google Scholar 

  120. BIPM, Bureau International des Poids et Mesures, Pavillon de Breteuil, F-92312 Sèvres cedex, France. http://www.bipm.org/

  121. P. de Bievre, H.S. Peiser, Atomic weight—the name, its history, definition, and units. Pure Appl. Chem. 64(10), 1535–1543 (1992)

    Article  Google Scholar 

  122. Wikipedia, Atomic mass unit. http://en.wikipedia.org/wiki/Atomic_mass_unit (2008)

  123. M.E. Wieser, Atomic weights. Pure Appl. Chem. 78, 2051–2066 (2006

    Article  Google Scholar 

  124. Wikipedia, Electronvolt. http://en.wikipedia.org/wiki/Electronvolt (2008)

  125. E. Robens et al., On the terms mass and weight. J. Therm, Anal. Cal. (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Robens, E., Jayaweera, S.A.A., Kiefer, S. (2014). Mass and Gravity. In: Balances. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36447-1_1

Download citation

Publish with us

Policies and ethics