Advertisement

Mechanical Properties of Nanorods and Melting Studies

Chapter
  • 1.4k Downloads
Part of the NanoScience and Technology book series (NANO)

Abstract

Mechanical properties of various elongated one dimensional micro- and nano-crystals have been discussed giving emphasis on their plausible applications. We focused our attention on stress, strain, Young’s modulus, dislocation, crystals defects, deformation, ductility, slip, growth direction, and properties of elongated particles (nanorod, nanowire, nanotube, whiskers and pillars). We also discussed plastic behavior, bulking and melting phenomenon of various one dimensional micro- and nano-particles. We have included metallic, oxide, magnetic and semiconductor elongated particles from various literatures in this chapter. Finally it is observed that in majority of the reports an enhancement of versatile mechanical properties have been remarked for the one dimenstion particles as compared to the bulk or zero dimensional counterparts.

Keywords

Burger Vector Twin Boundary Strain Gradient Plastic Behavior Gold Nanorods 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Brenner SS (1959) In: Doremus RH, Roberts BW, Turnbull D (eds) Growth and Perfection of Crystals. Wiley, New YorkGoogle Scholar
  2. 2.
    Greer JR, Nix WD (2005) Size dependence of mechanical properties of gold at the sub-micron scale. Appl Phys A-Mater Sci Process 80(8):1625–1629ADSCrossRefGoogle Scholar
  3. 3.
    Chattopadhyay S, Chen LC, Chen KH (2006) Nanotips: growth, model, and applications. Crit Rev Solid State Mater Sci 31(1–2):15–53ADSCrossRefGoogle Scholar
  4. 4.
    Mazilova TI, Mikhailovskij IM, Ksenofontov VA, Sadanov EV (2009) Field-Ion microscopy of quantum oscillations of linear carbon atomic chains. Nano Lett 9(2):774–778ADSCrossRefGoogle Scholar
  5. 5.
    Malygin GA (2010) Size effects under plastic deformation of microcrystals and nanocrystals. Phys Solid State 52(1):49–57ADSCrossRefGoogle Scholar
  6. 6.
    Hetzberg RH (1989) Deformation and fracture mechanics of engineering materials. Wiley, LondonGoogle Scholar
  7. 7.
    Courtney TH (1999) Mechanical behavior of materials. Wiley, LondonGoogle Scholar
  8. 8.
    Hosford WF (2005) Mechanical behavior of materials. Cambridge University Press, CambridgeGoogle Scholar
  9. 9.
    Hirth JP, Lothe J (1982) Theory of dislocations, 2nd ed. Wiley, LondonGoogle Scholar
  10. 10.
    Milstein F (1980) Theoretical elastic behaviour of crystals at large strains. J Mater Sci 15:1071–1084ADSCrossRefGoogle Scholar
  11. 11.
    Wu B, Heidelberg A, Boland JJ (2005) Mechanical properties of ultrahigh-strength gold nanowires. Nat Mater 4(7):525–529ADSCrossRefGoogle Scholar
  12. 12.
    Wu B, Heidelberg A, Boland JJ, Sader JE, Sun XM, Li YD (2006) Microstructure-hardened silver nanowires. Nano Lett 6(3):468–472ADSCrossRefGoogle Scholar
  13. 13.
    Voisin C, Del Fatti N, Christofilos D, Vallee F (2001) Ultrafast electron dynamics and optical nonlinearities in metal nanoparticles. J Phys Chem B 105(12):2264–2280CrossRefGoogle Scholar
  14. 14.
    Hartland GV (2006) Coherent excitation of vibrational modes in metallic nanoparticles. Ann Rev Phys Chem 57:403–430ADSCrossRefGoogle Scholar
  15. 15.
    Treacy MMJ, Ebbesen TW, Gibson JM (1996) Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381(6584):678–680ADSCrossRefGoogle Scholar
  16. 16.
    Krishnan A, Dujardin E, Ebbesen TW, Yianilos PN, Treacy MMJ (1998) Young’s modulus of single-walled nanotubes. Phys Rev B 58(20):14013–14019ADSCrossRefGoogle Scholar
  17. 17.
    Petrova H, Perez-Juste J, Zhang ZY, Zhang J, Kosel T, Hartland GV (2006) Crystal structure dependence of the elastic constants of gold nanorods. J Mater Chem 16(40):3957–3963CrossRefGoogle Scholar
  18. 18.
    Hu M, Wang X, Hartland GV, Mulvaney P, Juste JP, Sader JE (2003) Vibrational response of nanorods to ultrafast laser induced heating: Theoretical and experimental analysis. J Am Chem Soc 125(48):14925–14933CrossRefGoogle Scholar
  19. 19.
    Hu M, Hillyard P, Hartland GV, Kosel T, Perez-Juste J, Mulvaney P (2004) Determination of the elastic constants of gold nanorods produced by seed mediated growth. Nano Lett 4(12):2493–2497ADSCrossRefGoogle Scholar
  20. 20.
    Meyers MA, Mishra A, Benson DJ (2006) Mechanical properties of nanocrystalline materials. Progr Mater Sci 51(4):427–556CrossRefGoogle Scholar
  21. 21.
    Kraft O, Gruber PA, Monig R, Weygand D (2010) Plasticity in Confined Dimensions. In: Annual review of materials research, vol 40, pp 293–317Google Scholar
  22. 22.
    Lu K, Lu L, Suresh S (2009) Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science 324(5925):349–352ADSCrossRefGoogle Scholar
  23. 23.
    Brenner SS (1956) Tensile strength of whiskers. J Appl Phys 27:1484–1491ADSCrossRefGoogle Scholar
  24. 24.
    Shpak AP, Kotrechko SO, Mazilova TI, Mikhailovskij IM (2009) Inherent tensile strength of molybdenum nanocrystals. Sci Technol Adv Mater 10(4):art. n. 045004Google Scholar
  25. 25.
    Petrovic JJ, Milewski JV, Rohr DL, Gac FD (1985) Tensile mechanical-properties of sic whiskers. J Mater Sci 20(4):1167–1177ADSCrossRefGoogle Scholar
  26. 26.
    Wong EW, Sheehan PE, Lieber CM (1997) Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277(5334):1971–1975CrossRefGoogle Scholar
  27. 27.
    Richter G, Hillerich K, Gianola DS, Moenig R, Kraft O, Volkert CA (2009) Ultrahigh strength single crystalline nanowhiskers grown by physical vapor deposition. Nano Lett 9:3048–3052ADSCrossRefGoogle Scholar
  28. 28.
    Weibull W (1951) A statistical distribution function of wide applicability. J Appl Mech 18:293–297zbMATHGoogle Scholar
  29. 29.
    Pugno NM, Ruoff RS (2004) Quantized fracture mechanics. Phil Mag 84:2829–2845ADSCrossRefGoogle Scholar
  30. 30.
    Pugno NM, Ruoff RS (2006) Nanoscale Weibull statistics. J Appl Phys 99:024301–024304ADSCrossRefGoogle Scholar
  31. 31.
    Pugno NM, Ruoff RS (2007) Nanoscale Weibull statistics for nanofibers and nanotubes. J Aerosp Eng 20(2):97–101CrossRefGoogle Scholar
  32. 32.
    Uchic MD, Dimiduk DM, Florando JN, Nix WD (2004) Sample dimensions influence strength and crystal plasticity. Science 305:986–989ADSCrossRefGoogle Scholar
  33. 33.
    Greer JR, Oliver WC, Nix WD (2005) Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Mater 53(6):1821–1830CrossRefGoogle Scholar
  34. 34.
    Norfleet DM, Dimiduk DM, Polasik SJ, Uchic MD, Mills MJ (2008) Dislocation structures and their relationship to strength in deformed nickel microcrystals. Acta Mater 56(13):2988–3001CrossRefGoogle Scholar
  35. 35.
    Mikhailovskij IM, Poltinin PY, Fedorova LI (1983) Sov Phys Solid State 23:757Google Scholar
  36. 36.
    Gao Y, Liu ZL, You XC, Zhuang Z (2010) A hybrid multiscale computational framework of crystal plasticity at submicron scales. Comp Mater Sci 49(3):672–681CrossRefGoogle Scholar
  37. 37.
    Gerberich WW, Tymiak NI, Grunlan JC, Horstemeyer MF, Baskes MI (2002) Interpretations of indentation size effects. J Appl Mech, Trans ASME 69(4):433–442zbMATHCrossRefGoogle Scholar
  38. 38.
    Nix WD, Gao HJ (1998) Indentation size effects in crystalline materials: a law for strain gradient plasticity. J Mech Phys Solids 46(3):411–425ADSzbMATHCrossRefGoogle Scholar
  39. 39.
    Gilman JJ (1953) Deformation in crystalline materials. Appl Micromech Flow Solids pp 185–190Google Scholar
  40. 40.
    Shan ZW, Mishra RK, Asif SAS, Warren OL, Minor AM (2008) Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals. Nat Mater 7(2):115–119ADSCrossRefGoogle Scholar
  41. 41.
    Nadgorny EM (1962) The properties of whiskers. Sov Phys 5(3):462–476ADSCrossRefGoogle Scholar
  42. 42.
    Parthasarathy TA, Rao SI, Dimiduk DM, Uchic MD, Trinkle DR (2007) Contribution to size effect of yield strength from the stochastics of dislocation source lengths in finite samples. Scripta Mater 56(4):313–316CrossRefGoogle Scholar
  43. 43.
    Weinberger CR, Aubry S, Lee SW, Nix WD, Cai W (2009) Modelling dislocations in a free-standing thin film. Model Simul Mater Sci Eng 17:art. n. 075007Google Scholar
  44. 44.
    Dimiduk DM, Uchic MD, Parthasarathy TA (2005) Size-affected single-slip behavior of pure nickel microcrystals. Acta Mater 53(15):4065–4077CrossRefGoogle Scholar
  45. 45.
    Volkert CA, Lilleodden ET (2006) Size effects in the deformation of sub-micron Au columns. Phil Mag 86(33–35):5567–5579ADSCrossRefGoogle Scholar
  46. 46.
    Koh AS, Lee HP (2006) Shock-induced localized amorphization in metallic nanorods with strain-rate-dependent characteristics. Nano Lett 6(10):2260–2267ADSCrossRefGoogle Scholar
  47. 47.
    Zbib HM, de la Rubia TD (2002) A multiscale model of plasticity. Intern J Plast 18(9):1133–1163zbMATHCrossRefGoogle Scholar
  48. 48.
    Espinosa HD, Berbenni S, Panico M, Schwarz KW (2005) An interpretation of size-scale plasticity in geometrically confined systems. Proc Natl Acad Sci 102(47):16933–16938ADSCrossRefGoogle Scholar
  49. 49.
    Shiari B, Miller RE, Klug DD (2008) Multiscale modeling of solids at the nanoscale: dynamic approach. Can J Phys 86(2):391–400ADSCrossRefGoogle Scholar
  50. 50.
    Liu ZL, Liu XM, Zhuang Z, You XC (2009) A multi-scale computational model of crystal plasticity at submicron-to-nanometer scales. Intern J Plast 25(8):1436–1455zbMATHCrossRefGoogle Scholar
  51. 51.
    Weinberger CR, Cai W (2008) Surface-controlled dislocation multiplication in metal micropillars. Proc Natl Acad Sci 105(38):14304–14307ADSCrossRefGoogle Scholar
  52. 52.
    Bei H, Shim S, George EP, Miller MK, Herbert EG, Pharr GM (2007) Compressive strengths of molybdenum alloy micro-pillars prepared using a new technique. Scripta Mater 57(5):397–400CrossRefGoogle Scholar
  53. 53.
    Shigley JE, Mischke CR, Budynas RG (2004) Mechanical Engineering Design, 7th edn. McGraw-Hill, New YorkGoogle Scholar
  54. 54.
    Timoshenko SP (1921) On the correction for shear of the differential equation for transverse vibrations of prismatic bars. Phil Mag 6(41):744–746Google Scholar
  55. 55.
    Timoshenko SP (1922) On the transverse vibrations of bars of uniform cross section. Phil Mag 6(43):125–131Google Scholar
  56. 56.
    Timoshenko SP, Gere JM (1961) Theory of Elastic Stability, 2nd edn. McGraw-Hill, New YokGoogle Scholar
  57. 57.
    Wang LF, Hu HY (2005) Flexural wave propagation in single-walled carbon nanotubes. Phys Rev B 71(19):art. n. 195412Google Scholar
  58. 58.
    Eringen AC (1972) Nonlocal polar elastic continua. Int J Eng Sci 10:1–16MathSciNetzbMATHCrossRefGoogle Scholar
  59. 59.
    Eringen AC, Edelen DGB (1972) On nonlocal elasticity. Int J Eng Sci 10:233–248MathSciNetzbMATHCrossRefGoogle Scholar
  60. 60.
    Peddieson J, Buchanan GR, McNitt RP (2003) Application of nonlocal continuum models to nanotechnology. Int J Eng Sci 41(3–5):305–312CrossRefGoogle Scholar
  61. 61.
    Wang CM, Zhang YY, Ramesh SS, Kitipornchai S (2006) Buckling analysis of micro- and nano-rods/tubes based on nonlocal Timoshenko beam theory. J Phys D-Appl Phys 39(17):3904–3909ADSCrossRefGoogle Scholar
  62. 62.
    Young SJ, Ji LW, Chang SJ, Fang TH, Hsueh TJ, Meen TH, Chen IC (2007) Nanoscale mechanical characteristics of vertical ZnO nanowires grown on ZnO : Ga/glass templates. Nanotechnology 18(22):art. n. 225603Google Scholar
  63. 63.
    Riaz M, Fulati A, Zhao QX, Nur O, Willander M, Klason P (2008) Buckling and mechanical instability of ZnO nanorods grown on different substrates under uniaxial compression. Nanotechnology 19(41):art. n. 415708Google Scholar
  64. 64.
    Riaz M, Nur O, Willander M, Klason P (2008) Buckling of ZnO nanowires under uniaxial compression. Appl Phys Lett 92(10):art. n. 103118Google Scholar
  65. 65.
    Svensek D, Podgornik R (2008) Confined nanorods: Jamming due to helical buckling. Phys Rev E 77(3):art. n. 031808Google Scholar
  66. 66.
    Riaz M, Fulati A, Amin G, Alvi NH, Nur O, Willander M (2009) Buckling and elastic stability of vertical ZnO nanotubes and nanorods. J Appl Phys 106(3):art. n. 034309Google Scholar
  67. 67.
    Feng G, Nix WD, Yoon Y, Lee CJ (2006) A study of the mechanical properties of nanowires using nanoindentation. J Appl Phys 99(7):art. n. 074304Google Scholar
  68. 68.
    Goldstein AN, Echer CM, Alivisatos AP (1992) Melting In Semiconductor Nanocrystals. Science 256(5062):1425–1427ADSCrossRefGoogle Scholar
  69. 69.
    Sheng HW, Lu K, Ma E (1998) Melting of embedded Pb nanoparticles monitored using high-temperature in situ XRD. Nanostruct Mater 10(5):865–873CrossRefGoogle Scholar
  70. 70.
    Peters KF, Cohen JB, Chung YW (1998) Melting of Pb nanocrystals. Phys Rev B 57(21):13430–13438ADSCrossRefGoogle Scholar
  71. 71.
    Smith DJ, Petfordlong AK, Wallenberg LR, Bovin JO (1986) Dynamic atomic-level rearrangements in small gold particles. Science 233(4766):872–875ADSCrossRefGoogle Scholar
  72. 72.
    Buffat P, Borel JP (1976) Size effect on the melting temperature of gold particles. Phys Rev A 13:2287ADSGoogle Scholar
  73. 73.
    Lai SL, Guo JY, Petrova V, Ramanath G, Allen LH (1996) Size-dependent melting properties of small tin particles: nanocalorimetric measurements. Phys Rev Lett 77(1):99–102ADSCrossRefGoogle Scholar
  74. 74.
    Link S, Burda C, Mohamed MB, Nikoobakht B, El-Sayed MA (1999) Laser photothermal melting and fragmentation of gold nanorods: energy and laser pulse-width dependence. J Phys Chem A 103(9):1165–1170CrossRefGoogle Scholar
  75. 75.
    Bottani CE, Bassi AL, Tanner BK, Stella A, Tognini P, Cheyssac P, Kofman R (1999) Melting in metallic Sn nanoparticles studied by surface Brillouin scattering and synchrotron-x-ray diffraction. Phys Rev B 59(24):15601–15604ADSCrossRefGoogle Scholar
  76. 76.
    Link S, Burda C, Mohamed MB, Nikoobakht B, El-Sayed MA (2000) Femtosecond transient-absorption dynamics of colloidal gold nanorods: Shape independence of the electron-phonon relaxation time. Phys Rev B 61(9):6086–6090ADSCrossRefGoogle Scholar
  77. 77.
    Del Fatti N, Flytzanis C, Vallee F (1999) Ultrafast induced electron-surface scattering in a confined metallic system. Appl Phys B 68(3):433–437ADSCrossRefGoogle Scholar
  78. 78.
    Link S, El-Sayed MA (2001) Spectroscopic determination of the melting energy of a gold nanorod. J Chem Phys 114(5):2362–2368ADSCrossRefGoogle Scholar
  79. 79.
    Karabacak T, DeLuca JS, Wang PI, Ten Eyck GA, Ye D, Wang GC, Lu TM (2006) Low temperature melting of copper nanorod arrays. J Appl Phys 99(6):art. n. 064304Google Scholar
  80. 80.
    Chopra NG, Zettl A (1998) Measurement of the elastic modulus of a multi-wall boron nitride nanotube. Solid State Commun 105(5):297–300. doi: 10.1016/s0038-1098(97)10125-9 ADSCrossRefGoogle Scholar
  81. 81.
    Yakobson BI, Campbell MP, Brabec CJ, Bernholc J (1997) High strain rate fracture and C-chain unraveling in carbon nanotubes. Comp Mater Sci 8(4):341–348. doi: 10.1016/s0927-0256(97)00047-5 CrossRefGoogle Scholar
  82. 82.
    Rasekh M, Khadem SE (2011) Pull-in analysis of an electrostatically actuated nano-cantilever beam with nonlinearity in curvature and inertia. Int J Mech Sci 53(2):108–115. doi: 10.1016/j.ijmecsci.2010.11.007 CrossRefGoogle Scholar
  83. 83.
    Zhang M, Fang SL, Zakhidov AA, Lee SB, Aliev AE, Williams CD, Atkinson KR, Baughman RH (2005) Strong, transparent, multifunctional, carbon nanotube sheets. Science 309(5738):1215–1219. doi: 10.1126/science.1115311 ADSCrossRefGoogle Scholar
  84. 84.
    Dalton AB, Collins S, Munoz E, Razal JM, Ebron VH, Ferraris JP, Coleman JN, Kim BG, Baughman RH (2003) Super-tough carbon-nanotube fibres—These extraordinary composite fibres can be woven into electronic textiles. Nature 423(6941):703. doi: 10.1038/423703a ADSCrossRefGoogle Scholar
  85. 85.
    Motta M, Moisala A, Kinloch IA, Windle AH (2007) High performance fibres from ‘Dog bone’ carbon nanotubes. Adv Mater 19(21):3721. doi: 10.1002/adma.200700516 Google Scholar
  86. 86.
    He R, Feng XL, Roukes ML, Yang P (2008) Self-Transducing silicon nanowire electromechanical systems at room temperature. Nano Lett 8(6):1756–1761. doi: 10.1021/nl801071w ADSCrossRefGoogle Scholar
  87. 87.
    Rujia Z, Zhang Z, Jiang L, Xu K, Tian Q, Xue S, Hu J, Bando Y, Golberg D (2012) Heterostructures of vertical, aligned and dense SnO2 nanorods on graphene sheets: in situ TEM measured mechanical, electrical and field emission properties. J Mater Chem 22(36):19196–19201CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.NanostructuresIstituto Italiano di TecnologiaGenovaItaly
  2. 2.NanochemistryIstituto Italiano di TecnologiaGenovaItaly
  3. 3.National Nanotechnology Laboratory (NNL)Nanoscience Institute of CNRLecceItaly
  4. 4.Departament de Química Inorgànica—Institut de Nanociència i Nanotecnologia (IN2UB)Universitat de BarcelonaBarcelonaSpain
  5. 5.Department of ChemistryUniversity of DelhiDelhiIndia

Personalised recommendations