Catalytic Properties of Nanorods

Part of the NanoScience and Technology book series (NANO)


In this chapter, we review some recent studies concerning heterogeneous catalysis based on nanocrystals of varied shapes that hold new promises for a wide range of reactions. Although conventionally micro- and nano-particles of nearly spherical (or irregularly) shaped materials have been used as catalysts for years, only the last few decades of extensive surface characterization of nano-catalyst surfaces (via high-resolution electron microscopy, scanning probe microscopy, various surface spectroscopy techniques and surface reconstruction techniques) has helped to understand the reasons behind specific reactivity, selectivity and reaction pathways on different crystal facets of various catalyst materials in a wide range of chemical reactions. Here we note that despite the shape dependence of nanocatalysts is not fully understood and often debated, the recent studies have started to draw clear correlations between morphology and catalytic activity in nanocrystals. Therefore, the exploitation of new nanoscale catalyst particles, in which the individual components have specific size, shape, and exposure of specific reactive surfaces, will renew this field of research and pave the way for more efficient catalytic systems.


Methyl Orange Methanol Oxidation Spherical Nanoparticles Water Splitting Reaction Nanorods Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Somorjai GA (1996) Modern surface science and surface technologies: an introduction. Chem Rev 96(4):1223–1235. doi: 10.1021/cr950234e CrossRefGoogle Scholar
  2. 2.
    Christensen CH, Norskov JK (2008) A molecular view of heterogeneous catalysis. J Chem Phys 128(18):182503. doi: 10.1063/1.2839299 ADSCrossRefGoogle Scholar
  3. 3.
    Somorjai GA, Park JY (2008) Molecular factors of catalytic selectivity. Angew Chem Int Ed 47(48):9212–9228. doi: 10.1002/anie.200803181 CrossRefGoogle Scholar
  4. 4.
    Min BK, Friend CM (2007) Heterogeneous gold-based catalysis for green chemistry: low-temperature CO oxidation and propene oxidation. Chem Rev 107(6):2709–2724. doi: 10.1021/cr050954d CrossRefGoogle Scholar
  5. 5.
    Heitbaum M, Glorius F, Escher I (2006) Asymmetric heterogeneous catalysis. Angew Chem Int Ed 45(29):4732–4762. doi: 10.1002/anie.200504212 CrossRefGoogle Scholar
  6. 6.
    Roucoux A, Schulz J, Patin H (2002) Reduced transition metal colloids: a novel family of reusable catalysts? Chem Rev 102(10):3757–3778. doi: 10.1021/cr010350j CrossRefGoogle Scholar
  7. 7.
    Norskov JK, Bligaard T, Rossmeisl J, Christensen CH (2009) Towards the computational design of solid catalysts. Nat Chem 1(1):37–46. doi: 10.1038/nchem.121 CrossRefGoogle Scholar
  8. 8.
    Cuenya BR (2010) Synthesis and catalytic properties of metal nanoparticles: size, shape, support, composition, and oxidation state effects. Thin Solid Films 518(12):3127–3150. doi: 10.1016/j.tsf.2010.01.018 ADSCrossRefGoogle Scholar
  9. 9.
    Kiskinova M (1996) Surface structure and reactivity: reactions on face-centered cubic (110) metal surfaces involving adatom-induced reconstructions. Chem Rev 96(4):1431–1447. doi: 10.1021/cr950226y CrossRefGoogle Scholar
  10. 10.
    Stamenkovic VR, Fowler B, Mun BS, Wang GF, Ross PN, Lucas CA, Markovic NM (2007) Improved oxygen reduction activity on Pt3Ni (111) via increased surface site availability. Science 315:493–497. doi: 10.1126/science.1135941 ADSCrossRefGoogle Scholar
  11. 11.
    Lewis LN (1993) Chemical catalysis by colloids and clusters. Chem Rev 93(8):2693–2730CrossRefGoogle Scholar
  12. 12.
    Schmid G (1992) Large clusters and colloids: metals in the embryonic state. Chem Rev 92(8):1709–1727. doi: 10.1021/cr00016a002 CrossRefGoogle Scholar
  13. 13.
    Astruc D, Lu F, Aranzaes JR (2005) Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis. Angew Chem Int Ed 44(48):7852–7872. doi: 10.1002/anie.200500766 CrossRefGoogle Scholar
  14. 14.
    Gates BC (1995) Supported metal clusters: synthesis, structure, and catalysis. Chem Rev 95(3):511–522CrossRefGoogle Scholar
  15. 15.
    Wilson OM, Knecht MR, Garcia-Martinez JC, Crooks RM (2006) Effect of Pd nanoparticle size on the catalytic hydrogenation of allyl alcohol. J Am Chem Soc 128(14):4510–4511. doi: 10.1021/ja058217m CrossRefGoogle Scholar
  16. 16.
    Herzing AA, Kiely CJ, Carley AF, Landon P, Hutchings GJ (2008) Identification of active gold nanoclusters on iron oxide supports for CO oxidation. Science 321(5894):1331–1335. doi: 10.1126/science.1159639 ADSCrossRefGoogle Scholar
  17. 17.
    El-Sayed MA (2004) Small is different: shape-, size-, and composition-dependent properties of some colloidal semiconductor nanocrystals. Acc Chem Res 37(5):326–333CrossRefGoogle Scholar
  18. 18.
    Yin Y, Alivisatos AP (2005) Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature 437(7059):664–670ADSCrossRefGoogle Scholar
  19. 19.
    Cozzoli PD, Pellegrino T, Manna L (2006) Synthesis, properties and perspectives of hybrid nanocrystal structures. Chem Soc Rev 35(11):1195–1208CrossRefGoogle Scholar
  20. 20.
    Tao AR, Habas S, Yang PD (2008) Shape control of colloidal metal nanocrystals. Small 4(3):310–325. doi: 10.1002/smll.200701295 CrossRefGoogle Scholar
  21. 21.
    Chen J, Lim B, Lee EP, Xia Y (2009) Shape-controlled synthesis of platinum nanocrystals for catalytic and electrocatalytic applications. Nano Today 4(1):81–95. doi: 10.1016/j.nantod.2008.09.002 CrossRefGoogle Scholar
  22. 22.
    Komanicky V, Iddir H, Chang KC, Menzel A, Karapetrov G, Hennessy D, Zapol P, You H (2009) Shape-dependent activity of platinum array catalyst. J Am Chem Soc 131(16):5732–5733CrossRefGoogle Scholar
  23. 23.
    Narayanan R, El-Sayed MA (2004) Shape-dependent catalytic activity of platinum nanoparticles in colloidal solution. Nano Lett 4(7):1343–1348. doi: 10.1021/nl0495256 ADSCrossRefGoogle Scholar
  24. 24.
    Park KH, Jang K, Kim HJ, Son SU (2007) Near-monodisperse tetrahedral rhodium nanoparticles on charcoal: the shape-dependent catalytic hydrogenation of arenes. Angew Chem Int Ed 46(7):1152–1155CrossRefGoogle Scholar
  25. 25.
    Narayanan R, El-Sayed MA (2008) Some aspects of colloidal nanoparticle stability, catalytic activity, and recycling potential. Top Catal 47(1–2):15–21. doi: 10.1007/s11244-007-9029-0 CrossRefGoogle Scholar
  26. 26.
    Wang C, Hu Y, Lieber CM, Sun S (2008) Ultrathin Au nanowires and their transport properties. J Am Chem Soc 130(28):8902–10.1021/ja803408fCrossRefGoogle Scholar
  27. 27.
    Petrova H, Perez-Juste J, Zhang Z, Zhang J, Kosel T, Hartland GV (2006) Crystal structure dependence of the elastic constants of gold nanorods. J Mater Chem 16(40):3957–3963. doi: 10.1039/b607364f CrossRefGoogle Scholar
  28. 28.
    Petrova H, Perez-Juste J, Zhang ZY, Zhang J, Kosel T, Hartland GV (2006) Crystal structure dependence of the elastic constants of gold nanorods. J Mater Chem 16(40):3957–3963. doi: 10.1039/b607364f CrossRefGoogle Scholar
  29. 29.
    Perez-Juste J, Pastoriza-Santos I, Liz-Marzan LM, Mulvaney P (2005) Gold nanorods: synthesis, characterization and applications. Coord Chem Rev 249(17–18):1870–1901. doi: 10.1016/j.ccr.2005.01.030 CrossRefGoogle Scholar
  30. 30.
    Baranov D, Fiore A, van Huis M, Giannini C, Falqui A, Lafont U, Zandbergen H, Zanella M, Cingolani R, Manna L (2010) Assembly of colloidal semiconductor nanorods in solution by depletion attraction. Nano Lett 10(2):743–749. doi: 10.1021/Nl903946n ADSCrossRefGoogle Scholar
  31. 31.
    Figuerola A, Franchini IR, Fiore A, Mastria R, Falqui A, Bertoni G, Bals S, Van Tendeloo G, Kudera S, Cingolani R, Manna L (2009) End-to-end assembly of shape-controlled nanocrystals via a nanowelding approach mediated by gold domains. Adv Mater 21(5):550. doi: 10.1002/adma.200801928 CrossRefGoogle Scholar
  32. 32.
    Nobile C, Carbone L, Fiore A, Cingolani R, Manna L, Krahne R (2009) Self-assembly of highly fluorescent semiconductor nanorods into large scale smectic liquid crystal structures by coffee stain evaporation dynamics. J Phys Condens Matter 21(26):264013ADSCrossRefGoogle Scholar
  33. 33.
    Habas SE, Lee H, Radmilovic V, Somorjai GA, Yang P (2007) Shaping binary metal nanocrystals through epitaxial seeded growth. Nat Mater 6(9):692–697. doi: 10.1038/nmat1957 ADSCrossRefGoogle Scholar
  34. 34.
    Lee I, Delbecq F, Morales R, Albiter MA, Zaera F (2009) Tuning selectivity in catalysis by controlling particle shape. Nat Mater 8(2):132–138. doi: 10.1038/nmat2371 ADSCrossRefGoogle Scholar
  35. 35.
    Bai X, Gao Y, Liu H-g, Zheng L (2009) Synthesis of amphiphilic ionic liquids terminated gold nanorods and their superior catalytic activity for the reduction of nitro compounds. J Phys Chem C 113(41):17730–17736. doi: 10.1021/jp906378d CrossRefGoogle Scholar
  36. 36.
    Berhault G, Bisson L, Thomazeau C, Verdon C, Uzio D (2007) Preparation of nanostructured Pd particles using a seeding synthesis approach: application to the selective hydrogenation of buta-1, 3-diene. Appl Catal A Gen 327(1):32–43. doi: 10.1016/j.apcata.2007.04.028 CrossRefGoogle Scholar
  37. 37.
    Chen YH, Hung HH, Huang MH (2009) Seed-mediated synthesis of palladium nanorods and branched nanocrystals and their use as recyclable Suzuki coupling reaction catalysts. J Am Chem Soc 131(25):9114–9121. doi: 10.1021/ja903305d CrossRefGoogle Scholar
  38. 38.
    Miyaura N, Suzuki A (1995) Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chem Rev 95(7):2457–2483CrossRefGoogle Scholar
  39. 39.
    Huang X, Zheng N (2009) One-pot, high-yield synthesis of 5-fold twinned pd nanowires and nanorods. J Am Chem Soc 131(13):4602. doi: 10.1021/ja9009343 CrossRefGoogle Scholar
  40. 40.
    Amirav L, Alivisatos AP (2010) Photocatalytic hydrogen production with tunable nanorod heterostructures. J Phys Chem Lett 1(7):1051–1054. doi: 10.1021/jz100075c CrossRefGoogle Scholar
  41. 41.
    Maksimuk S, Yang SC, Peng ZM, Yang H (2007) Synthesis and characterization of ordered intermetallic PtPb nanorods. J Am Chem Soc 129(28):8684. doi: 10.1021/ja071980r CrossRefGoogle Scholar
  42. 42.
    Liu F, Lee JY, Zhou WJ (2005) Multisegment PtRu nanorods: electrocatalysts with adjustable bimetallic pair sites. Adv Funct Mater 15(9):1459–1464. doi: 10.1002/adfm.200400523 CrossRefGoogle Scholar
  43. 43.
    Liu QS, Yan Z, Henderson NL, Bauer JC, Goodman DW, Batteas JD, Schaak RE (2009) Synthesis of CuPt nanorod catalysts with tunable lengths. J Am Chem Soc 131(16):5720. doi: 10.1021/Ja810151r CrossRefGoogle Scholar
  44. 44.
    Xie XW, Li Y, Liu ZQ, Haruta M, Shen WJ (2009) Low-temperature oxidation of CO catalysed by Co3O4 nanorods. Nature 458(7239):746–749. doi: 10.1038/nature07877 ADSCrossRefGoogle Scholar
  45. 45.
    Zhou KB, Wang RP, Xu BQ, Li YD (2006) Synthesis, characterization and catalytic properties of CuO nanocrystals with various shapes. Nanotechnology 17(15):3939–3943. doi: 10.1088/0957-4484/17/15/055 ADSCrossRefGoogle Scholar
  46. 46.
    Si R, Flytzani-Stephanopoulos M (2008) Shape and crystal-plane effects of nanoscale ceria on the activity of Au-CeO2 catalysts for the water-gas shift reaction. Angew Chem Int Ed 47(15):2884–2887. doi: 10.1002/anie.200705828 CrossRefGoogle Scholar
  47. 47.
    Lee YM, Garcia MA, Huls NAF, Sun SH (2010) Synthetic tuning of the catalytic properties of Au-Fe3O4 nanoparticles. Angew Chem Int Ed 49(7):1271–1274. doi: 10.1002/anie.200906130 CrossRefGoogle Scholar
  48. 48.
    Boucher MB, Goergen S, Yi N, Flytzani-Stephanopoulos M (2011) Shape effects in metal oxide supported nanoscale gold catalysts. Phys Chem Chem Phys 13(7):2517–2527. doi: 10.1039/c0cp02009e CrossRefGoogle Scholar
  49. 49.
    Sayle TXT, Sayle DC (2010) Elastic deformation in ceria nanorods via a fluorite-to-rutile phase transition. ACS Nano 4(2):879–886. doi: 10.1021/Nn901612s CrossRefGoogle Scholar
  50. 50.
    Han WQ, Wen W, Hanson JC, Teng XW, Marinkovic N, Rodriguez JA (2009) One-dimensional ceria as catalyst for the low-temperature water-gas shift reaction. J Phys Chem C 113(52):21949–21955. doi: 10.1021/jp9066444 CrossRefGoogle Scholar
  51. 51.
    Liang SH, Bulgan FTG, Zong RL, Zhu YF (2008) Effect of phase structure of MnO2 nanorod catalyst on the activity for CO oxidation. J Phys Chem C 112(14):5307–5315. doi: 10.1021/jp0774995 CrossRefGoogle Scholar
  52. 52.
    Sui N, Duan YZ, Jiao XL, Chen DR (2009) Large-scale preparation and catalytic properties of one-dimensional alpha/beta-MnO2 nanostructures. J Phys Chem C 113(20):8560–8565. doi: 10.1021/jp810452k CrossRefGoogle Scholar
  53. 53.
    Lin YG, Hsu YK, Chen SY, Lin YK, Chen LC, Chen KH (2009) Nanostructured zinc oxide nanorods with copper nanoparticles as a microreformation catalyst. Angew Chem Int Ed 48(41):7586–7590. doi: 10.1002/anie.200902907 CrossRefGoogle Scholar
  54. 54.
    Gu C, Cheng C, Huang H, Wong T, Wang N, Zhang T-Y (2009) Growth and photocatalytic activity of dendrite-like ZnO@Ag heterostructure nanocrystals. Cryst Growth Des 9(7):3278–3285. doi: 10.1021/cg900043k CrossRefGoogle Scholar
  55. 55.
    Elmalem E, Saunders AE, Costi R, Salant A, Banin U (2008) Growth of photocatalytic CdSe-Pt nanorods and nanonets. Adv Mater 20(22):4312–4317. doi: 10.1002/adma.200800044 CrossRefGoogle Scholar
  56. 56.
    Yu CL, Yu JC (2009) Sonochemical fabrication, characterization and photocatalytic properties of Ag/ZnWO4 nanorod catalyst. Mater Sci Eng B-Adv Funct Solid-State Mater 164(1):16–22. doi: 10.1016/j.mseb.2009.06.008 CrossRefGoogle Scholar
  57. 57.
    Zhu H, Tao J, Dong X (2010) Preparation and photoelectrochemical activity of Cr-doped TiO2 nanorods with nanocavities. J Phys Chem C 114(7):2873–2879. doi: 10.1021/Jp9085987 CrossRefGoogle Scholar
  58. 58.
    Sun M, Li DZ, Li WJ, Chen YB, Chen ZX, He YH, Fu XZ (2008) New photocatalyst, Sb2S3, for degradation of methyl orange under visible-light irradiation. J Phys Chem C 112(46):18076–18081. doi: 10.1021/Jp806496d CrossRefGoogle Scholar
  59. 59.
    Chen D, Ye J (2009) Selective-synthesis of high-performance single-crystalline Sr(2)Nb(2)O(7) nanoribbon and SrNb(2)O(6) nanorod photocatalysts. Chem Mater 21(11):2327–2333. doi: 10.1021/cm8034714 MathSciNetADSCrossRefGoogle Scholar
  60. 60.
    Ertl G (2008) Reactions at surfaces: from atoms to complexity (Nobel lecture). Angew Chem Int Ed 47(19):3524–3535. doi: 10.1002/anie.200800480 CrossRefGoogle Scholar
  61. 61.
    Xiong Y, Cai H, Wiley BJ, Wang J, Kim MJ, Xia Y (2007) Synthesis and mechanistic study of palladium nanobars and nanorods. J Am Chem Soc 129(12):3665–3675. doi: 10.1021/ja0688023 CrossRefGoogle Scholar
  62. 62.
    Katz-Boon H, Rossouw CJ, Weyland M, Funston AM, Mulvaney P, Etheridge J (2011) Three-dimensional morphology and crystallography of gold nanorods. Nano Lett 11(1):273–278. doi: 10.1021/nl103726k ADSCrossRefGoogle Scholar
  63. 63.
    Ling T, Yu H, Liu X, Shen Z, Zhu J (2008) Five-fold twinned nanorods of FCC Fe: synthesis and characterization. Cryst Growth Des 8(12):4340–4342. doi: 10.1021/cg800108n ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.NanostructuresIstituto Italiano di TecnologiaGenovaItaly
  2. 2.NanochemistryIstituto Italiano di TecnologiaGenovaItaly
  3. 3.National Nanotechnology Laboratory (NNL)Nanoscience Institute of CNRLecceItaly
  4. 4.Departament de Química Inorgànica—Institut de Nanociència i Nanotecnologia (IN2UB)Universitat de BarcelonaBarcelonaSpain
  5. 5.Department of ChemistryUniversity of DelhiDelhiIndia

Personalised recommendations