Advertisement

Magnetic Properties of Nanorods

Chapter
Part of the NanoScience and Technology book series (NANO)

Abstract

The effect of shape anisotropy on the magnetic properties of elongated nanostructured materials is analyzed in Chap. 5. We underline here the importance of shape contributions to the global magnetic behavior of nanocrystals as a way to tune their properties and increase their implementation in several technological fields. Elongated magnetic nanoparticles are thought of having a high potential in improved data storage devices as well as in novel spintronic systems, not to forget the possibility to exploit them as active materials in biomedicine as diagnostic or therapeutic agents. The control over the synthesis and physical characterization of rod-like magnetic nanocrystals is growing exponentially in the last decades. Yet our knowledge on them is limited and a huge amount of work is required and currently underway to go beyond the state-of-the-art, as described in Chap. 5. After a brief description of the basic magnetic phenomena accounting in size and shape-controlled nanocrystals, we review here the most outstanding results concerning the characterization of elongated oxide- and metal-based magnetic nanoparticles, followed by the new insights on the study of their magnetization reversal mechanisms and domain wall motion phenomena, both of special interest for future spintronic applications.

Keywords

Domain Wall Magnetization Reversal Magnetocrystalline Anisotropy Anodic Aluminum Oxide Template Shape Anisotropy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Gao J, Gu H, Xu B (2009) Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications. Acc Chem Res 42(8):1097–1107. doi: 10.1021/ar9000026 CrossRefGoogle Scholar
  2. 2.
    Qiao RR, Yang CH, Gao MY (2009) Superparamagnetic iron oxide nanoparticles: from preparations to in vivo MRI applications (vol 19, p 6274). J Mater Chem 19(48):9286Google Scholar
  3. 3.
    Felser C, Fecher Gerhard H, Balke B (2007) Spintronics: a challenge for materials science and solid-state chemistry. Angew ChemInt Edit 46(5):668–699CrossRefGoogle Scholar
  4. 4.
    Li K, Wu Y, Guo Z, Zheng Y, Han G, Qiu J, Luo P, An L, Zhou T (2007) Exchange coupling and its applications in magnetic data storage. J Nanosci Nanotech 7:13–45Google Scholar
  5. 5.
    Lu A-H, Salabas EL, Schüth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew ChemInt Edit 46(8):1222–1244CrossRefGoogle Scholar
  6. 6.
    Millen RL, Kawaguchi T, Granger MC, Porter MD, Tondra M (2005) Giant magneto resistive sensors and super paramagnetic nanoparticles: a chip-scale detection strategy for immunosorbent assays. Anal Chem 77(20):6581–6587. doi: 10.1021/ac0509049 CrossRefGoogle Scholar
  7. 7.
    Sun S, Murray CB, Weller D, Folks L, Moser A (2000) Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287(5460):1989–1992. doi: 10.1126/science.287.5460.1989 ADSCrossRefGoogle Scholar
  8. 8.
    Reiss G, Hutten A (2005) Magnetic nanoparticles: applications beyond data storage. Nat Mater 4(10):725–726ADSCrossRefGoogle Scholar
  9. 9.
    Wang ZK, Zhang VL, Lim HS, Ng SC, Kuok MH, Jain S, Adeyeye AO (2010) Nanostructured magnonic crystals with size-tunable bandgaps. ACS Nano 4(2):643–648. doi: 10.1021/nn901171u CrossRefGoogle Scholar
  10. 10.
    Jeong U, Teng X, Wang Y, Yang H, Xia Y (2007) Superparamagnetic colloids: controlled synthesis and niche applications. Adv Mater 19(1):33–60CrossRefGoogle Scholar
  11. 11.
    Lin X-M, Samia ACS (2006) Synthesis, assembly and physical properties of magnetic nanoparticles. J Magn Magn Mater 305(1):100–109ADSCrossRefGoogle Scholar
  12. 12.
    Dobson J (2006) Magnetic nanoparticles for drug delivery. Drug Dev Res 67(1):55–60CrossRefGoogle Scholar
  13. 13.
    Park K, Lee S, Kang E, Kim K, Choi K, Kwon IC (2009) New generation of multifunctional nanoparticles for cancer imaging and therapy. Adv Funct Mater 19(10):1553–1566CrossRefGoogle Scholar
  14. 14.
    Wilhelm C, Lavialle F, Péchoux C, Tatischeff I, Gazeau F (2008) Intracellular trafficking of magnetic nanoparticles to design multifunctional biovesicles. Small 4(5):577–582CrossRefGoogle Scholar
  15. 15.
    Dave SR, Gao X (2009) Monodisperse magnetic nanoparticles for biodetection, imaging, and drug delivery: a versatile and evolving technology. Wiley Interdiscipl Rev Nanomed Nanobiotechnol 1(6):583–609CrossRefGoogle Scholar
  16. 16.
    Figuerola A, Di Corato R, Manna L, Pellegrino T (2010) From iron oxide nanoparticles towards advanced iron-based inorganic materials designed for biomedical applications. Pharm Res 62(2):126–143CrossRefGoogle Scholar
  17. 17.
    Hurst SJ, Payne EK, Qin L, Mirkin CA (2006) Multisegmented one-dimensional nanorods prepared by hard-template synthetic methods. Angew ChemInt Edit 45(17):2672–2692CrossRefGoogle Scholar
  18. 18.
    Mathur S, Barth S, Werner U, Hernandez-Ramirez F, Romano-Rodriguez A (2008) Chemical vapor growth of one-dimensional magnetite nanostructures. Adv Mater 20(8):1550–1554CrossRefGoogle Scholar
  19. 19.
    Wang X, Li Y (2006) Solution-based synthetic strategies for 1-D nanostructures. Inorg Chem 45(19):7522–7534. doi: 10.1021/ic051885o CrossRefGoogle Scholar
  20. 20.
    Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H (2003) One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater 15(5):353–389CrossRefGoogle Scholar
  21. 21.
    Caruntu D, Caruntu G, O’Connor CJ (2008) Advanced wet-chemical synthetic approaches to inorganic nanostructures Kerala. Tranworld Research network, Kerala, IndiaGoogle Scholar
  22. 22.
    Martin JI, Nogues J, Liu K, Vicent JL, Schuller IK (2003) Ordered magnetic nanostructures: fabrication and properties. J Magn Magn Mater 256(1–3):449–501ADSCrossRefGoogle Scholar
  23. 23.
    O’Handley RC (2000) Modern magnetic materials: principles and applications. Wiley, New YorkGoogle Scholar
  24. 24.
    Spaldin N (2003) Magnetic materials: fundamentals and device applications. Cambridge University Press, Cambridge, UKGoogle Scholar
  25. 25.
    Bedanta S, Kleemann W (2009) Supermagnetism. J Phys D-Appl Phys 42 (1): Art no 013001. doi: 10.1088/0022-3727/42/1/013001
  26. 26.
    Stoner EC, Wohlfarth EP (1948) Phil Trans R Soc A 240:599–642ADSzbMATHCrossRefGoogle Scholar
  27. 27.
    Sohn BH, Cohen RE, Papaefthymiou GC (1998) Magnetic properties of iron oxide nanoclusters within microdomains of block copolymers. J Magn Magn Mater 182(1–2):216–224ADSCrossRefGoogle Scholar
  28. 28.
    Cullity BD, Graham CD (2009) Introduction to magnetic materials, 2nd edn. John Wiley & Sons, IEEE Press, NYGoogle Scholar
  29. 29.
    Dormann JL, Fiorani D, Tronc E (1997) Adv Chem Phys 98:283CrossRefGoogle Scholar
  30. 30.
    Miller JS, Drillon M (2001) Magnetism: molecules to materials III. WileyGoogle Scholar
  31. 31.
    Blundell S (2001) Magnetism in condensed matter. Oxford University Press, New YorkGoogle Scholar
  32. 32.
    Arrott AS, Heinrich B, Aharoni A (1979) IEEE Trans Magn 15:1228ADSCrossRefGoogle Scholar
  33. 33.
    Luborsky FE (1961) Development of elongated particle magnets. J Appl Phys 32(3):S171–S183ADSCrossRefGoogle Scholar
  34. 34.
    Pignard S, Goglio G, Radulescu A, Piraux L, Dubois S, Declemy A, Duvail JL (2000) Study of the magnetization reversal in individual nickel nanowires. J Appl Phys 87(2):824–829ADSCrossRefGoogle Scholar
  35. 35.
    Bødker F, Mørup S, Linderoth S (1994) Surface effects in metallic iron nanoparticles. Phys Rev Lett 72(2):282–285ADSCrossRefGoogle Scholar
  36. 36.
    Morales MP, Veintemillas-Verdaguer S, Montero MI, Serna CJ, Roig A, Casas L, Martinez B, Sandiumenge F (1999) Surface and internal spin canting in gamma-Fe2O3 nanoparticles. Chem Mater 11(11):3058–3064CrossRefGoogle Scholar
  37. 37.
    Dumestre F, Chaudret B, Amiens C, Fromen MC, Casanove MJ, Renaud P, Zurcher P (2002) Shape control of thermodynamically stable cobalt nanorods through organometallic chemistry. Angew ChemInt Edit 41(22):4286–4289CrossRefGoogle Scholar
  38. 38.
    Jamet M, Wernsdorfer W, Thirion C, Dupuis V, Mélinon P, Pérez A, Mailly D (2004) Magnetic anisotropy in single clusters. Phys Rev B 69(2):Art no 024401Google Scholar
  39. 39.
    Farle M (1998) Ferromagnetic resonance of ultrathin metallic layers. Rep Progr Phys 61(7):755ADSCrossRefGoogle Scholar
  40. 40.
    Walz F (2002) The Verwey transition–a topical review. J Phys: Condens Matter 14(12):R285–R340ADSCrossRefGoogle Scholar
  41. 41.
    Roca AG, Marco JF, Morales MD, Serna CJ (2007) Effect of nature and particle size on properties of uniform magnetite and maghemite nanoparticles. J Phys Chem C 111(50):18577–18584CrossRefGoogle Scholar
  42. 42.
    Hermanek M, Zboril R, Medrik I, Pechousek J, Gregor C (2007) Catalytic efficiency of iron(III) oxides in decomposition of hydrogen peroxide: competition between the surface area and crystallinity of nanoparticles. J Am Chem Soc 129(35):10929–10936. doi: 10.1021/ja072918x CrossRefGoogle Scholar
  43. 43.
    Zhang Y, Rao P, Lü M, Zeng D, Wu J (2009) Synthesis and color evolution of silica-coated hematite nanoparticles. J Am Ceram Soc 92(8):1877–1880CrossRefGoogle Scholar
  44. 44.
    Gou X, Wang G, Kong X, Wexler D, Horvat J, Yang J, Park J (2008) Flutelike porous hematite nanorods and branched nanostructures: synthesis, characterisation and application for gas-sensing. Chem Eur J 14(19):5996–6002CrossRefGoogle Scholar
  45. 45.
    Wu Z, Yu K, Zhang S, Xie Y (2008) Hematite hollow spheres with a mesoporous shell: controlled synthesis and applications in gas sensor and lithium ion batteries. J Phys Chem C 112(30):11307–11313. doi: 10.1021/jp803582d CrossRefGoogle Scholar
  46. 46.
    Popovici M, Gich M, Niznansky D, Roig A, Savii C, Casas L, Molins E, Zaveta K, Enache C, Sort J, de Brion S, Chouteau G, Nogues J (2004) Optimized synthesis of the elusive epsilon-Fe2O3 phase via sol-gel chemistry. Chem Mater 16(25):5542–5548. doi: 10.1021/cm048628m CrossRefGoogle Scholar
  47. 47.
    Lian SY, Wang E, Kang ZH, Bai YP, Gao L, Jiang M, Hu CW, Xu L (2004) Synthesis of magnetite nanorods and porous hematite nanrods. Solid State Commun 129(8):485–490. doi: 10.1016/j.ssc.2003.11.043 ADSCrossRefGoogle Scholar
  48. 48.
    Wang J, Peng ZM, Huang YJ, Chen QW (2004) Growth of magnetite nanorods along its easy-magnetization axis of 110. J Cryst Growth 263(1–4):616–619. doi: 10.1016/j.jcrysgro.2003.11.012 ADSCrossRefGoogle Scholar
  49. 49.
    Wang J, Chen QW, Zeng C, Hou BY (2004) Magnetic-field-induced growth of single-crystalline Fe3O4 nanowires. Adv Mater 16(2):137–140. doi: 10.1002/adma.200306136 CrossRefGoogle Scholar
  50. 50.
    Wan J, Yao Y, Tang G (2007) Controlled-synthesis, characterization, and magnetic properties of Fe3O4 nanostructures. Appl Phys A-Mater Sci Process 89(2):529–532. doi: 10.1007/s00339-007-4107-5 ADSCrossRefGoogle Scholar
  51. 51.
    Yang XY, Yu PF, Moats MS, Zhang XF (2011) Wet chemical synthesis of high aspect ratio magnetite rods. Powder Technol 212(3):439–444. doi: 10.1016/j.powtec.2011.06.029 Google Scholar
  52. 52.
    Nath S, Kaittanis C, Ramachandran V, Dalal NS, Perez JM (2009) Synthesis, magnetic characterization, and sensing applications of novel dextran-coated iron oxide nanorods. Chem Mater 21(8):1761–1767. doi: 10.1021/cm8031863 CrossRefGoogle Scholar
  53. 53.
    Kaittanis C, Naser SA, Perez JM (2006) One-step, nanoparticle-mediated bacterial detection with magnetic relaxation. Nano Lett 7(2):380–383. doi: 10.1021/nl062553z ADSCrossRefGoogle Scholar
  54. 54.
    Wang X, Chen XY, Gao LS, Zheng HG, Ji MR, Tang CM, Shen T, Zhang ZD (2004) Synthesis of beta-FeOOH and alpha-Fe2O3 nanorods and electrochemical properties of beta-FeOOH. J Mater Chem 14(5):905–907. doi: 10.1039/b310722a CrossRefGoogle Scholar
  55. 55.
    Jia BP, Gao L, Sun J (2007) Synthesis of single crystalline hematite polyhedral nanorods via a facile hydrothermal process. J Am Ceram Soc 90(4):1315–1318. doi: 10.1111/j.1551-2916.2007.01523.x CrossRefGoogle Scholar
  56. 56.
    Woo K, Lee HJ, Ahn JP, Park YS (2003) Sol-gel mediated synthesis of Fe2O3 nanorods. Adv Mater 15(20):1761–1764. doi: 10.1002/adma.200305561 CrossRefGoogle Scholar
  57. 57.
    Cavaliere-Jaricot S, Brioude A, Miele P (2009) Ultrathin polycrystalline hematite and goethite-hematite core-shell nanorods. Langmuir 25(5):2551–2553. doi: 10.1021/la803172b CrossRefGoogle Scholar
  58. 58.
    Liu XM, Fu SY, Xiao HM, Huang CJ (2005) Preparation and, characterization of shuttle-like alpha-Fe2O3 nanoparticles by supermolecular template. J Solid State Chem 178(9):2798–2803. doi: 10.1016/j.jssc.2005.06.018 ADSCrossRefGoogle Scholar
  59. 59.
    Jia CJ, Sun LD, Yan ZG, You LP, Luo F, Han XD, Pang YC, Zhang Z, Yan CH (2005) Iron oxide nanotubes–single-crystalline iron oxide nanotubes. Angew ChemInt Edit 44(28):4328–4333. doi: 10.1002/anie.200463038 CrossRefGoogle Scholar
  60. 60.
    Zhao Yi M, Li Y-H, Ma Ren Z, Roe Martin J, McCartney David G, Zhu Yan Q (2006) Growth and characterization of iron oxide nanorods/nanobelts prepared by a simple iron-water reaction. Small 2(3):422–427CrossRefGoogle Scholar
  61. 61.
    Li SZ, Zhang H, Wu JB, Ma XY, Yang DR (2006) Shape-control fabrication and characterization of the airplane-like FeO(OH) and Fe2O3 nanostructures. Cryst Growth Des 6(2):351–353. doi: 10.1021/cg0495835 CrossRefGoogle Scholar
  62. 62.
    Zysler RD, Fiorani D, Testa AM, Suber L, Agostinelli E, Godinho M (2003) Size dependence of the spin-flop transition in hematite nanoparticles. Phys Rev B 68 (21):Art no 212408Google Scholar
  63. 63.
    Fiorani D, Testa AM, Suber L, Angiolini M, Montone A, Polichetti M (1999) Size and shape effect on the canted antiferromagnetism in alpha-Fe2O3 particles. Nanostruct Mater 12(5–8):939–942CrossRefGoogle Scholar
  64. 64.
    Liu L, Kou HZ, Mo WL, Liu HJ, Wang YQ (2006) Surfactant-assisted synthesis of alpha-Fe2O3 nanotubes and nanorods with shape-dependent magnetic properties. J Phys Chem B 110(31):15218–15223. doi: 10.1021/jp0627473 CrossRefGoogle Scholar
  65. 65.
    Woo K, Lee HJ (2004) Synthesis and magnetism of hematite and maghemite nanoparticles. J Magn Magn Mater 272:E1155–E1156. doi: 10.1016/j.jmmm.2003.12.201 ADSCrossRefGoogle Scholar
  66. 66.
    Wu CZ, Yin P, Zhu X, OuYang CZ, Xie Y (2006) Synthesis of hematite (alpha-Fe2O3) nanorods: Diameter-size and shape effects on their applications in magnetism, lithium ion battery, and gas sensors. J Phys Chem B 110(36):17806–17812. doi: 10.1021/jp0633906 CrossRefGoogle Scholar
  67. 67.
    Cha HG, Kim SJ, Lee KJ, Jung MH, Kang YS (2011) Single-crystalline porous hematite nanorods: photocatalytic and magnetic properties. J Phys Chem C 115(39):19129–19135. doi: 10.1021/Jp206958g Google Scholar
  68. 68.
    Zhao YM, Dunnill CW, Zhu YQ, Gregory DH, Kockenberger W, Li YH, Hu WB, Ahmad I, McCartney DG (2007) Low-temperature magnetic properties of hematite nanorods. Chem Mater 19(4):916–921. doi: 10.1021/cm062375a CrossRefGoogle Scholar
  69. 69.
    Cornell RM (2003) The iron oxides: strucutre, properties, reactions, occurrences and uses. Wiley-VCH Verlag GmbH & Co, KgaA, Weinheim, GermanyCrossRefGoogle Scholar
  70. 70.
    Zeng SY, Tang KB, Li TW (2007) Controlled synthesis of alpha-Fe2O3 nanorods and its size-dependent optical absorption, electrochemical, and magnetic properties. J Colloid Interf Sci 312(2):513–521. doi: 10.1016/j.jcis.2007.03.046 CrossRefGoogle Scholar
  71. 71.
    Cao H, Wang G, Zhang L, Liang Y, Zhang S, Zhang X (2006) Shape and magnetic properties of single-crystalline hematite (alpha-Fe2O3) nanocrystals. ChemPhysChem 7(9):1897–1901CrossRefGoogle Scholar
  72. 72.
    Zhang XJ, Li QL (2008) Microwave assisted hydrothermal synthesis and magnetic property of hematite nanorods. Mater Lett 62(6–7):988–990. doi: 10.1016/j.matlet.2007.07.029 CrossRefGoogle Scholar
  73. 73.
    Sorescu M, Brand RA, Mihaila-Tarabasanu D, Diamandescu L (1999) The crucial role of particle morphology in the magnetic properties of haematite. J Appl Phys 85(8):5546–5548ADSCrossRefGoogle Scholar
  74. 74.
    Eid C, Luneau D, Salles V, Asmar R, Monteil Y, Khoury A, Brioude A (2011) Magnetic properties of hematite nanotubes elaborated by electrospinning process. J Phys Chem C 115(36):17643–17646. doi: 10.1021/jp203426j Google Scholar
  75. 75.
    Yue ZG, Wei W, You ZX, Yang QZ, Yue H, Su ZG, Ma GH (2011) Iron oxide nanotubes for magnetically guided delivery and pH-activated release of insoluble anticancer drugs. Adv Funct Mater 21(18):3446–3453. doi: 10.1002/adfm.201100510 Google Scholar
  76. 76.
    Park JH, von Maltzahn G, Zhang LL, Schwartz MP, Ruoslahti E, Bhatia SN, Sailor MJ (2008) Magnetic iron oxide nanoworms for tumor targeting and imaging. Adv Mater 20(9):1630– +. doi: 10.1002/adma.200800004 Google Scholar
  77. 77.
    Gonsalves KE, Li H, Santiago P (2001) Synthesis of acicular iron oxide nanoparticles and their dispersion in a polymer matrix. J Mater Sci 36(10):2461–2471ADSCrossRefGoogle Scholar
  78. 78.
    Palchoudhury S, An W, Xu YL, Qin Y, Zhang ZT, Chopra N, Holler RA, Turner CH, Bao YP (2012) Synthesis and growth mechanism of iron oxide nanowhiskers. Nano Lett 11(3):1141–1146. doi: 10.1021/nl200136j Google Scholar
  79. 79.
    Hyeon T, Lee SS, Park J, Chung Y, Bin Na H (2001) Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. J Am Chem Soc 123(51):12798–12801. doi: 10.1021/ja016812s CrossRefGoogle Scholar
  80. 80.
    Milosevic I, Jouni H, David C, Warmont F, Bonnin D, Motte L Facile Microwave process in water for the fabrication of magnetic nanorods. J Phys Chem C 115(39):18999–19004. doi: 10.1021/jp205334v
  81. 81.
    Jin B, Ohkoshi S, Hashimoto K (2004) Giant coercive field of nanometer-sized iron oxide. Adv Mater 16(1):48–51. doi: 10.1002/adma.200305297 CrossRefGoogle Scholar
  82. 82.
    Jin J, Hashimoto K, Ohkoshi S (2005) Formation of spherical and rod-shaped epsilon-Fe2O3 nanocrystals with a large coercive field. J Mater Chem 15(10):1067–1071. doi: 10.1039/b416554c CrossRefGoogle Scholar
  83. 83.
    Ohkoshi S, Sakurai S, Jin J, Hashimoto K (2005) The addition effects of alkaline earth ions in the chemical synthesis of epsilon-Fe2O3 nanocrystals that exhibit a huge coercive field. J Appl Phys 97 (10):Art no 10K312. doi: 10.1063/1.1855615
  84. 84.
    Batlle X, Labarta A (2002) Finite-size effects in fine particles: magnetic and transport properties. J Phys D-Appl Phys 35(6):R15–R42ADSCrossRefGoogle Scholar
  85. 85.
    Bate G (1961) Angular variation of the magnetic properties of partially aligned g-Fe2O3 particles. J Appl Phys 32(3):239S–240SADSCrossRefGoogle Scholar
  86. 86.
    Vayssieres L, Beermann N, Lindquist S-E, Hagfeldt A (2001) Controlled aqueous chemical growth of oriented three-dimensional crystalline nanorod arrays: application to iron(III) oxides. Chem Mater 13(2):233–235. doi: 10.1021/cm001202x CrossRefGoogle Scholar
  87. 87.
    Vayssieres L, Rabenberg L, Manthiram A (2002) Aqueous chemical route to ferromagnetic 3-d Arrays of iron nanorods. Nano Lett 2(12):1393–1395. doi: 10.1021/nl025840l ADSCrossRefGoogle Scholar
  88. 88.
    Wen X, Wang S, Ding Y, Wang ZL, Yang S (2005) Controlled growth of large-area, uniform, vertically aligned arrays of α-Fe2O3 nanobelts and nanowires. J Phys Chem B 109(1):215–220. doi: 10.1021/jp0461448 CrossRefGoogle Scholar
  89. 89.
    Morber JR, Ding Y, Haluska MS, Li Y, Liu JP, Wang ZL, Snyder RL (2006) PLD-assisted VLS growth of aligned ferrite nanorods, nanowires, and nanobelts synthesis, and properties. J Phys Chem B 110(43):21672–21679. doi: 10.1021/jp064484i CrossRefGoogle Scholar
  90. 90.
    Wu J–J, Lee Y-L, Chiang H–H, Wong DK-P (2006) Growth and magnetic properties of oriented α-Fe2O3 nanorods. J Phys Chem B 110(37):18108–18111. doi: 10.1021/jp0644661 CrossRefGoogle Scholar
  91. 91.
    Chueh Y-L, Lai M-W, Liang J-Q, Chou L-J, Wang ZL (2006) Systematic study of the growth of aligned arrays of a-Fe2O3 and Fe3O4 nanowires by a vapor–solid process. Adv Funct Mater 16(17):2243–2251CrossRefGoogle Scholar
  92. 92.
    Kim CH, Chun HJ, Kim DS, Kim SY, Park J, Moon JY, Lee G, Yoon J, Jo Y, Jung M-H, Jung SI, Lee CJ (2006) Magnetic anisotropy of vertically aligned alpha-Fe[sub 2]O[sub 3] nanowire array. Appl Phys Lett 89(22):223103ADSCrossRefGoogle Scholar
  93. 93.
    Ji G, Tang S, Xu B, Gu B, Du Y (2003) Synthesis of CoFe2O4 nanowire arrays by sol-gel template method. Chem Phys Lett 379(5–6):484–489ADSCrossRefGoogle Scholar
  94. 94.
    Zheng H, Wang J, Lofland SE, Ma Z, Mohaddes-Ardabili L, Zhao T, Salamanca-Riba L, Shinde SR, Ogale SB, Bai F, Viehland D, Jia Y, Schlom DG, Wuttig M, Roytburd A, Ramesh R (2004) Multiferroic BaTiO3-CoFe2O4 nanostructures. Science 303(5658):661–663. doi: 10.1126/science.1094207 ADSCrossRefGoogle Scholar
  95. 95.
    Zhu LP, Xiao HM, Liu XM, Fu SY (2006) Template-free synthesis and characterization of novel 3D urchin-like alpha-Fe2O3 superstructures. J Mater Chem 16(19):1794–1797. doi: 10.1039/b604378j CrossRefGoogle Scholar
  96. 96.
    An Z, Zhang J, Pan S, Yu F (2009) Facile template-free synthesis and characterization of elliptic α-Fe2O3 superstructures. J Phys Chem C 113(19):8092–8096. doi: 10.1021/jp9004168 CrossRefGoogle Scholar
  97. 97.
    Shiraki M, Wakui Y, Tokusima T, Tsuya N (1985) IEEE Trans Magn 1465Google Scholar
  98. 98.
    Kida A, Kajiyama H, Heike S, Hashizume T, Koike K (1999) Self-organized growth of Fe nanowire array on H2O/Si(100)(2 x n). Appl Phys Lett 75(4):540–542ADSCrossRefGoogle Scholar
  99. 99.
    Grobert N, Hsu WK, Zhu YQ, Hare JP, Kroto HW, Walton DRM, Terrones M, Terrones H, Redlich P, Ruhle M, Escudero R, Morales F (1999) Enhanced magnetic coercivities in Fe nanowires. Appl Phys Lett 75(21):3363–3365ADSCrossRefGoogle Scholar
  100. 100.
    Elmers HJ, Hauschild J, Gradmann U (1998) Magnetism of nanowires of Fe(110) on W(110). J Magn Magn Mater 177:827–828ADSCrossRefGoogle Scholar
  101. 101.
    Cordente N, Respaud M, Senocq F, Casanove MJ, Amiens C, Chaudret B (2001) Synthesis and magnetic properties of nickel nanorods. Nano Lett 1(10):565–568. doi: 10.1021/nl0100522 ADSCrossRefGoogle Scholar
  102. 102.
    Nogues J, Sort J, Langlais V, Skumryev V, Surinach S, Munoz JS, Baro MD (2005) Exchange bias in nanostructures. Phys Rep Rev Sect Phys Lett 422(3):65–117Google Scholar
  103. 103.
    Baker C, Hasanain SK, Shah SI (2004) The magnetic behavior of iron oxide passivated iron nanoparticles. J Appl Phys 96(11):6657–6662ADSCrossRefGoogle Scholar
  104. 104.
    Whitney TM, Jiang JS, Searson PC, Chien CL (1993) Fabrication and magnetic-properties of arrays of metallic nanowires. Science 261(5126):1316–1319ADSCrossRefGoogle Scholar
  105. 105.
    Henry Y, Ounadjela K, Piraux L, Dubois S, George JM, Duvail JL (2001) Magnetic anisotropy and domain patterns in electrodeposited cobalt nanowires. Eur Phys J B 20(1):35–54ADSCrossRefGoogle Scholar
  106. 106.
    Qin J, Nogues J, Mikhaylova M, Roig A, Munoz JS, Muhammed M (2005) Differences in the magnetic properties of Co, Fe, and Ni 250–300 nm wide nanowires electrodeposited in amorphous anodized alumina templates. Chem Mater 17(7):1829–1834. doi: 10.1021/cm047870q CrossRefGoogle Scholar
  107. 107.
    Khan HR, Loebich O, Rauscher G (1996) Crystallographic and magnetic investigations of the cobalt columns electrodeposited in the pores of anodic alumina. Thin Solid Films 275(1–2):207–209ADSCrossRefGoogle Scholar
  108. 108.
    Aslam M, Bhobe R, Alem N, Donthu S, Dravid VP (2005) Controlled large-scale synthesis and magnetic properties of single-crystal cobalt nanorods. J Appl Phys 98 (7):Art no 074311. doi: 10.1063/1.2073968
  109. 109.
    Kitakami O, Sato H, Shimada Y, Sato F, Tanaka M (1997) Size effect on the crystal phase of cobalt fine particles. Phys Rev B 56(21):13849–13854ADSCrossRefGoogle Scholar
  110. 110.
    Thurn-Albrecht T, Schotter J, Kastle CA, Emley N, Shibauchi T, Krusin-Elbaum L, Guarini K, Black CT, Tuominen MT, Russell TP (2000) Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates. Science 290(5499):2126–2129ADSCrossRefGoogle Scholar
  111. 111.
    Dumestre F, Chaudret B, Amiens C, Respaud M, Fejes P, Renaud P, Zurcher P (2003) Unprecedented crystalline super-lattices of monodisperse cobalt nanorods. Angew ChemInt Edit 42(42):5213–5216. doi: 10.1002/anie.200352090 CrossRefGoogle Scholar
  112. 112.
    Luttinger JM, Tisza LPR (1946) Phys Rev 70:954ADSCrossRefGoogle Scholar
  113. 113.
    Politi P, Pini MG (2002) Dipolar interaction between two-dimensional magnetic particles. Phys Rev B 66 (21):Art No 214414. doi: 10.1103/PhysRevB.66.214414
  114. 114.
    Viau G, Garcia C, Maurer T, Chaboussant G, Ott F, Soumare Y, Piquemal JY (2009) Highly crystalline cobalt nanowires with high coercivity prepared by soft chemistry. Phys Status Solidi A- Appl Mat 206(4):663–666. doi: 10.1002/pssa.200881260 ADSCrossRefGoogle Scholar
  115. 115.
    Maurer T, Ott F, Chaboussant G, Soumare Y, Piquemal JY, Viau G (2007) Magnetic nanowires as permanent magnet materials. Appl Phys Lett 91 (17):Art no 172501. doi: 10.1063/1.2800786
  116. 116.
    Ott F, Maurer T, Chaboussant G, Soumare Y, Piquemal JY, Viau G (2009) Effects of the shape of elongated magnetic particles on the coercive field. J Appl Phys 105(1):013915–013917ADSCrossRefGoogle Scholar
  117. 117.
    Sugawara A, Coyle T, Hembree GG, Scheinfein MR (1997) Self-organized Fe nanowire arrays prepared by shadow deposition on NaCl(110) templates. Appl Phys Lett 70(8):1043–1045ADSCrossRefGoogle Scholar
  118. 118.
    Yang SG, Zhu H, Yu DL, Jin ZQ, Tang SL, Du YW (2000) Preparation and magnetic property of Fe nanowire array. J Magn Magn Mater 222(1–2):97–100ADSCrossRefGoogle Scholar
  119. 119.
    Cao HQ, Xu Z, Sheng D, Hong JM, Sang H, Du YW (2001) An array of iron nanowires encapsulated in polyaniline nanotubules and its magnetic behavior. J Mater Chem 11(3):958–960CrossRefGoogle Scholar
  120. 120.
    Borowiak-Palen E, Mendoza E, Bachmatiuk A, Rummeli MH, Gemming T, Nogues J, Skumryev V, Kalenczuk RJ, Pichler T, Silva SRP (2006) Iron filled single-wall carbon nanotubes–a novel ferromagnetic medium. Chem Phys Lett 421(1–3):129–133. doi: 10.1016/j.cplett.2006.01.072 ADSCrossRefGoogle Scholar
  121. 121.
    Oppegard AL, Darnell FJ, Miller HC (1961) Magnetic properties of single-domain iron and iron-cobalt particles prepared by borohydride reduction. J Appl Phys 32(3):184S–185SADSCrossRefGoogle Scholar
  122. 122.
    Park SJ, Kim S, Lee S, Khim ZG, Char K, Hyeon T (2000) Synthesis and magnetic studies of uniform iron nanorods and nanospheres. J Am Chem Soc 122(35):8581–8582. doi: 10.1021/ja001628c CrossRefGoogle Scholar
  123. 123.
    Kim J, Lee JE, Lee J, Yu JH, Kim BC, An K, Hwang Y, Shin CH, Park JG, Hyeon T (2006) Magnetic fluorescent delivery vehicle using uniform mesoporous silica spheres embedded with monodisperse magnetic and semiconductor nanocrystals. J Am Chem Soc 128(3):688–689CrossRefGoogle Scholar
  124. 124.
    Ichia LSH, Katz E, Wasserman J, Willner I (2002) Magneto-switchable electro generated biochemiluminescence. Chem Commun 2:158–159CrossRefGoogle Scholar
  125. 125.
    Lv BL, Xu Y, Wu D, Sun YH (2009) Preparation and magnetic properties of spindle porous iron nanoparticles. Mater Res Bull 44(5):961–965. doi: 10.1016/j.materresbull.2008.11.022 CrossRefGoogle Scholar
  126. 126.
    Dormann JL, Dorazio F, Lucari F, Tronc E, Prene P, Jolivet JP, Fiorani D, Cherkaoui R, Nogues M (1996) Thermal variation of the relaxation time of the magnetic moment of gamma-Fe2O3 nanoparticles with interparticle interactions of various strengths. Phys Rev B 53(21):14291–14297ADSCrossRefGoogle Scholar
  127. 127.
    Ni XM, Su XB, Yang ZP, Zheng HG (2003) The preparation of nickel nanorods in water-in-oil microemulsion. J Cryst Growth 252(4):612–617. doi: 10.1016/s0022-0248(03)00954-0 ADSCrossRefGoogle Scholar
  128. 128.
    Oh SL, Kim YR, Malkinski L, Vovk A, Whittenburg SL, Kim EM, Jung JS (2007) Magnetic properties of nickel nanostructures grown in AAO membrane. J Magn Magn Mater 310(2):E827–E829. doi: 10.1016/j.mmm.2006.10.821 ADSCrossRefGoogle Scholar
  129. 129.
    Kumar A, Fahler S, Schlorb H, Leistner K, Schultz L (2006) Competition between shape anisotropy and magnetoelastic anisotropy in Ni nanowires electrodeposited within alumina templates. Phys Rev B 73 (6):Art no 064421. doi: 10.1103/PhysRevB.73.064421
  130. 130.
    Kato S, Kitazawa H, Kido G (2004) Magnetic properties of Ni nanowires in porous alumina arrays. J Magn Magn Mater 272:1666–1667. doi: 10.1016/j.jmmm.2003.12.246 ADSCrossRefGoogle Scholar
  131. 131.
    Bender P, Gunther A, Tschope A, Birringer R (2011) Synthesis and characterization of uniaxial ferrogels with Ni nanorods as magnetic phase. J Magn Magn Mater 323(15):2055–2063. doi: 10.1016/j.jmmm.2011.03.016 Google Scholar
  132. 132.
    Celedon A, Hale CM, Wirtz D (2011) Magnetic manipulation of nanorods in the nucleus of living cells. Biophys J 101(8):1880–1886. doi: 10.1016/j.bpj.2011.09.008 Google Scholar
  133. 133.
    Ono K, Kakefuda Y, Okuda R, Ishii Y, Kamimura S, Kitamura A, Oshima M (2002) Organometallic synthesis and magnetic properties of ferromagnetic Sm-Co nanoclusters. J Appl Phys 91(10):8480–8482. doi: 10.1063/1.1456407 ADSCrossRefGoogle Scholar
  134. 134.
    Gu HW, Xu B, Rao JC, Zheng RK, Zhang XX, Fung KK, Wong CYC (2003) Chemical synthesis of narrowly dispersed SmCo5 nanoparticles. J Appl Phys 93(10):7589–7591. doi: 10.1063/1.1537697 ADSCrossRefGoogle Scholar
  135. 135.
    Chakka VM, Altuncevahir B, Jin ZQ, Li Y, Liu JP (2006) Magnetic nanoparticles produced by surfactant-assisted ball milling. J Appl Phys 99(8):Art no 08e912. doi: 10.1063/1.2170593
  136. 136.
    Yue M, Wang YP, Poudyal N, Rong CB, Liu JP (2009) Preparation of Nd-Fe-B nanoparticles by surfactant-assisted ball milling technique. J Appl Phys 105(7):Art no 07a708. doi: 10.1063/1.3059228
  137. 137.
    Akdogan NG, Hadjipanayis GC, Sellmyer DJ (2010) Novel Nd(2)Fe(14)B nanoflakes and nanoparticles for the development of high energy nanocomposite magnets. Nanotechnology 21(29):Art no 295705Google Scholar
  138. 138.
    Stoyanov S, Skumryev V, Zhang Y, Huang Y, Hadjipanayis G, Nogues J (2003) High anisotropy Sm-Co nanoparticles: preparation by cluster gun technique and their magnetic properties. J Appl Phys 93(10):7592–7594. doi: 10.1063/1.1544503 ADSCrossRefGoogle Scholar
  139. 139.
    Matsushita T, Iwamoto T, Inokuchi M, Toshima N (2010) Novel ferromagnetic materials of SmCo5 nanoparticles in single-nanometer size: chemical syntheses and characterizations. Nanotechnology 21(9):Art no 095603. doi: 10.1088/0957-4484/21/9/095603
  140. 140.
    Chinnasamy CN, Huang JY, Lewis LH, Latha B, Vittoria C, Harris VG (2008) Direct chemical synthesis of high coercivity air-stable SmCo nanoblades. Appl Phys Lett 93(3):Art no 032505. doi: 10.1063/1.2963034
  141. 141.
    Gao DQ, Fu JL, Xu Y, Xue DS (2008) Preparation and magnetic properties of Nd5Fe95-xBx nanowire arrays. Mater Lett 62(17–18):3070–3072. doi: 10.1016/j.matlet.2008.01.107 CrossRefGoogle Scholar
  142. 142.
    Zhang ZT, Blom DA, Gai Z, Thompson JR, Shen J, Dai S (2003) High-yield solvothermal formation of magnetic CoPt alloy nanowires. J Am Chem Soc 125(25):7528–7529. doi: 10.1021/ja035185z CrossRefGoogle Scholar
  143. 143.
    Chu SZ, Inoue S, Wada K, Kurashima K (2004) Fabrication and structural characteristics of nanocrystalline Fe-Pt thin films and Fe-Pt nanowire arrays embedded in alumina films on ITO/glass. J Phys Chem B 108(18):5582–5587. doi: 10.1021/jp0378642 CrossRefGoogle Scholar
  144. 144.
    Mao CB, Solis DJ, Reiss BD, Kottmann ST, Sweeney RY, Hayhurst A, Georgiou G, Iverson B, Belcher AM (2004) Virus-based toolkit for the directed synthesis of magnetic and semiconducting nanowires. Science 303(5655):213–217ADSCrossRefGoogle Scholar
  145. 145.
    Wang Y, Yang H (2005) Synthesis of CoPt nanorods in ionic liquids. J Am Chem Soc 127(15):5316–5317. doi: 10.1021/ja043625w CrossRefGoogle Scholar
  146. 146.
    Huang YH, Okumura H, Hadjipanayis GC, Weller D (2002) CoPt and FePt nanowires by electrodeposition. J Appl Phys 91(10):6869–6871. doi: 10.1063/1.1447524 ADSCrossRefGoogle Scholar
  147. 147.
    Sui Y, Yue L, Skomski R, Li XZ, Zhou J, Sellmyer DJ (2003) CoPt hard magnetic nanoparticle films synthesized by high temperature chemical reduction. J Appl Phys 93(10):7571–7573. doi: 10.1063/1.1544501 ADSCrossRefGoogle Scholar
  148. 148.
    Hou YL, Kondoh H, Che RC, Takeguchi M, Ohta T (2006) Ferromagnetic FePt nanowires: solvothermal reduction synthesis and characterization. Small 2(2):235–238. doi: 10.1002/smll.200500328 CrossRefGoogle Scholar
  149. 149.
    Chen M, Pica T, Jiang YB, Li P, Yano K, Liu JP, Datye AK, Fan HY (2007) Synthesis and self-assembly of fcc phase FePt nanorods. J Am Chem Soc 129(20):6348–6349. doi: 10.1021/ja069057x CrossRefGoogle Scholar
  150. 150.
    Khurshid H, Huang YH, Bonder MJ, Hadjipanayis C (2009) Microstructural and magnetic properties of CoPt nanowires. J Magn Magn Mater 321(4):277–280. doi: 10.1016/j.jmmm.2008.09.002 ADSCrossRefGoogle Scholar
  151. 151.
    Yasui N, Imada A, Den T (2003) Electrodeposition of (001) oriented CoPt L1(0) columns into anodic alumina films. Appl Phys Lett 83(16):3347–3349. doi: 10.1063/1.1622787 ADSCrossRefGoogle Scholar
  152. 152.
    Mallet J, Yu-Zhang K, Chien CL, Eagleton TS, Searson PC (2004) Fabrication and magnetic properties of fcc CoxPt1-x nanowires. Appl Phys Lett 84(19):3900–3902. doi: 10.1063/1.1739274 ADSCrossRefGoogle Scholar
  153. 153.
    Mallet J, Yu-Zhang K, Matefi-Tempfli S, Matefi-Tempfli M, Piraux L (2005) Electrodeposited L1(0) CoxPt1-x nanowires. J Phys D-Appl Phys 38(6):909–914. doi: 10.1088/0022-3727/38/6/020 ADSCrossRefGoogle Scholar
  154. 154.
    Rhen FMF, Backen E, Coey JMD (2005) Thick-film permanent magnets by membrane electrodeposition. J Appl Phys 97(11):113908. doi: 113908.10.1063/1.1923587 ADSCrossRefGoogle Scholar
  155. 155.
    Gapin AI, Ye XR, Aubuchon JF, Chen LH, Tang YJ, Jin S (2006) CoPt patterned media in anodized aluminum oxide templates. J Appl Phys 99(8):08g902. doi: 10.1063/1.2163289
  156. 156.
    Dahmane Y, Cagnon L, Voiron J, Pairis S, Bacia M, Ortega L, Benbrahim N, Kadri A (2006) Magnetic and structural properties of electrodeposited CoPt and FePt nanowires in nanoporous alumina templates. J Phys D-Appl Phys 39(21):4523–4528. doi: 10.1088/0022-3727/39/21/001 ADSCrossRefGoogle Scholar
  157. 157.
    Gao JH, Sun DL, Zhang XQ, Zhan QF, He W, Sun Y, Cheng ZH (2008) Structure and magnetic properties of the self-assembled Co52Pt48 nanowire arrays. Appl Phys Lett 92(10):Art no 102501. doi: 10.1063/1.2894199
  158. 158.
    Shamaila S, Sharif R, Riaz S, Ma M, Khaleeq-ur-Rahman M, Han XF (2008) Magnetic and magnetization properties of electrodeposited fcc CoPt nanowire arrays. J Magn Magn Mater 320(12):1803–1809. doi: 10.1016/j.jmmm.2008.02.183 CrossRefGoogle Scholar
  159. 159.
    Che RC, Takeguchi M, Shimojo M, Zhang W, Furuya K (2005) Fabrication and electron holography characterization of FePt alloy nanorods. Appl Phys Lett 87(22):Art no 223109. doi: 10.1063/1.2136071
  160. 160.
    Li WX, Zhang J, Thompson J, Shen TH (2007) Magnetic circular dichroism in Co1-xPtx nanowire bundles at the Co L-2,L-3 edges. Appl Phys Lett 91(13):Art no 133111. doi: 10.1063/1.2784186
  161. 161.
    Aharoni A, Shtrikman S (1958) Magnetization curve of the infinite cylinder. Phys Rev 109(5):1522MathSciNetADSzbMATHCrossRefGoogle Scholar
  162. 162.
    Aharoni A (1997) Angular dependence of nucleation by curling in a prolate spheroid. J Appl Phys 82(3):1281–1287ADSCrossRefGoogle Scholar
  163. 163.
    Usov NA, Chang CR, Wei ZH (2002) Buckling instability in thin soft elliptical particles. Phys Rev B 66(18):Art no 184431. doi: 10.1103/PhysRevB.66.184431
  164. 164.
    Beeli C, Doudin B, Ansermet JP, Stadelmann P (1996) Study of Co, Ni and Co/Cu nanowires: magnetic flux imaging by off-axis electron holography. J Magn Magn Mater 164(1–2):77–90ADSCrossRefGoogle Scholar
  165. 165.
    Wernsdorfer W, Doudin B, Mailly D, Hasselbach K, Benoit A, Meier J, Ansermet JP, Barbara B (1996) Nucleation of magnetization reversal in individual nanosized nickel wires. Phys Rev Lett 77(9):1873–1876ADSCrossRefGoogle Scholar
  166. 166.
    Obarr R, Schultz S (1997) Switching field studies of individual single domain Ni columns. J Appl Phys 81(8):5458–5460ADSCrossRefGoogle Scholar
  167. 167.
    Belliard L, Miltat J, Thiaville A, Dubois S, Duvail JL, Piraux L (1998) Observing magnetic nanowires by means of magnetic force microscopy. J Magn Magn Mater 190(1–2):1–16ADSCrossRefGoogle Scholar
  168. 168.
    Schabes ME (1991) Micromagnetic theory of nonuniform magnetization processes in magnetic recording particles. J Magn Magn Mater 95(3):249–288ADSCrossRefGoogle Scholar
  169. 169.
    Broz JS, Braun HB, Brodbeck O, Baltensperger W, Helman JS (1990) Nucleation of magnetization reversal via creation of pairs of bloch walls. Phys Rev Lett 65(6):787–789ADSCrossRefGoogle Scholar
  170. 170.
    Wernsdorfer W, Orozco EB, Hasselbach K, Benoit A, Barbara B, Demoncy N, Loiseau A, Pascard H, Mailly D (1997) Experimental evidence of the Neel-Brown model of magnetization reversal. Phys Rev Lett 78(9):1791–1794ADSCrossRefGoogle Scholar
  171. 171.
    Wernsdorfer W, Hasselbach K, Benoit A, Barbara B, Doudin B, Meier J, Ansermet JP, Mailly D (1997) Measurements of magnetization switching in individual nickel nanowires. Phys Rev B 55(17):11552–11559ADSCrossRefGoogle Scholar
  172. 172.
    McGuire T, Potter R (1975) Anisotropic magnetoresistance in ferromagnetic 3D alloys. IEEE Trans Magn 11(4):1018–1038ADSCrossRefGoogle Scholar
  173. 173.
    Rijks T, Coehoorn R, Dejong MJM, Dejonge WJM (1995) Semiclassical calculations of the anisotropic magnetoresistance of nife-based thin-films, wires and multilayers. Phys Rev B 51(1):283–291ADSCrossRefGoogle Scholar
  174. 174.
    Wegrowe JE, Gilbert SE, Kelly D, Doudin B, Ansermet JP (1998) Anisotropic magnetoresistance as a probe of magnetization reversal in individual nano-sized nickel wires. IEEE Trans Magn 34(4):903–905ADSCrossRefGoogle Scholar
  175. 175.
    Wegrowe JE, Kelly D, Franck A, Gilbert SE, Ansermet JP (1999) Magnetoresistance of ferromagnetic nanowires. Phys Rev Lett 82(18):3681–3684ADSCrossRefGoogle Scholar
  176. 176.
    Jaccard Y, Guittienne P, Kelly D, Wegrowe JE, Ansermet JP (2000) Uniform magnetization rotation in single ferromagnetic nanowires. Phys Rev B 62(2):1141–1147ADSCrossRefGoogle Scholar
  177. 177.
    Oliveira AB, Rezende SM, Azevedo A (2008) Magnetization reversal in permalloy ferromagnetic nanowires investigated with magnetoresistance measurements. Phys Rev B 78(2):Art no 024423. doi: 10.1103/PhysRevB.78.024423
  178. 178.
    Hubert A, Schafer R (1998) Magnetic domains: the analysis of magnetic microstructures. Springer, BerlinGoogle Scholar
  179. 179.
    Allwood DA, Xiong G, Cooke MD, Faulkner CC, Atkinson D, Vernier N, Cowburn RP (2002) Submicrometer ferromagnetic NOT gate and shift register. Science 296(5575):2003–2006ADSCrossRefGoogle Scholar
  180. 180.
    Grollier J, Boulenc P, Cros V, Hamzic A, Vaures A, Fert A, Faini G (2003) Switching a spin valve back and forth by current-induced domain wall motion. Appl Phys Lett 83(3):509–511. doi: 10.1063/1.1594841 ADSCrossRefGoogle Scholar
  181. 181.
    Schryer NL, Walker LR (1974) The motion of 180[degree] domain walls in uniform dc magnetic fields. J Appl Phys 45(12):5406–5421ADSCrossRefGoogle Scholar
  182. 182.
    McMichael RD, Twisselmann DJ, Kunz A (2003) Localized ferromagnetic resonance in inhomogeneous thin films. Phys Rev Lett 90 (22):art. n. 227601. doi:227601  10.1103/PhysRevLett.90.227601
  183. 183.
    Zimmermann L, Miltat J (1991) Instability of bubble radial motion associated with chirality changes. J Magn Magn Mater 94(1–2):207–214ADSCrossRefGoogle Scholar
  184. 184.
    Honda S, Fukuda N, Kusuda T (1981) Mechanisms of bubble-wall radial motion deduced from chirality switching and collapse experiments using fast-rise bias field pulse. J Appl Phys 52(9):5756–5762ADSCrossRefGoogle Scholar
  185. 185.
    Beach GSD, Nistor C, Knutson C, Tsoi M, Erskine JL (2005) Dynamics of field-driven domain-wall propagation in ferromagnetic nanowires. Nat Mater 4(10):741–744. doi: 10.1038/nmat1477 ADSCrossRefGoogle Scholar
  186. 186.
    Hayashi M, Thomas L, Bazaliy YB, Rettner C, Moriya R, Jiang X, Parkin SSP (2006) Influence of current on field-driven domain wall motion in permalloy nanowires from time resolved measurements of anisotropic magnetoresistance. Phys Rev Lett 96 (19):Art no 197207. doi: 10.1103/PhysRevLett.96.197207
  187. 187.
    Ono T, Miyajima H, Shigeto K, Mibu K, Hosoito N, Shinjo T (1999) Propagation of a magnetic domain wall in a submicrometer magnetic wire. Science 284(5413):468–470ADSCrossRefGoogle Scholar
  188. 188.
    Telesnin R, Ilyicheva E, Kanavina N, Stepanova N, Shishkov A (1969) Domain-wall motion in thin permalloy films in pulsed magnetic field. IEEE Trans Magn 5(3):232–236ADSCrossRefGoogle Scholar
  189. 189.
    Atkinson D, Allwood DA, Xiong G, Cooke MD, Faulkner CC, Cowburn RP (2003) Magnetic domain-wall dynamics in a submicrometre ferromagnetic structure. Nat Mater 2(2):85–87ADSCrossRefGoogle Scholar
  190. 190.
    Konishi S, Yamada S, Kusuda T (1971) Domain-wall velocity, mobility, and mean-free-path in permalloy films. IEEE Trans Magn 7(3):722–724ADSCrossRefGoogle Scholar
  191. 191.
    Redjdal M, Giusti J, Ruane MF, Humphrey FB (2002) Thickness dependent wall mobility in thin permalloy films. J Appl Phys 91(10):7547–7549. doi: 10.1063/1.1456403 ADSCrossRefGoogle Scholar
  192. 192.
    Nakatani Y, Thiaville A, Miltat J (2003) Faster magnetic walls in rough wires. Nat Mater 2(8):521–523. doi: 10.1038/nmat931 ADSCrossRefGoogle Scholar
  193. 193.
    Lee JY, Lee KS, Choi S, Guslienko KY, Kim SK (2007) Dynamic transformations of the internal structure of a moving domain wall in magnetic nanostripes. Phys Rev B 76 (18):Art no 184408. doi: 10.1103/PhysRevB.76.184408
  194. 194.
    Hayashi M, Thomas L, Rettner C, Moriya R, Parkin SSP (2007) Direct observation of the coherent precession of magnetic domain walls propagating along permalloy nanowires. Nat Phys 3(1):21–25. doi: 10.1038/nphys464 CrossRefGoogle Scholar
  195. 195.
    Glathe S, Mattheis R, Berkov DV (2008) Direct observation and control of the Walker breakdown process during a field driven domain wall motion. Appl Phys Lett 93 (7):Art no 072508. doi: 10.1063/1.2975181
  196. 196.
    Kunz A (2006) Simulating the maximum domain wall speed in a magnetic nanowire. IEEE Trans Magn 42(10):3219–3221. doi: 10.1109/tmag.2006.880141 ADSCrossRefGoogle Scholar
  197. 197.
    Bryan MT, Schrefl T, Allwood DA (2010) Dependence of transverse domain wall dynamics on permalloy nanowire dimensions. IEEE Trans Magn 46(5):1135–1138. doi: 10.1109/tmag.2010.2040622 ADSCrossRefGoogle Scholar
  198. 198.
    Porter DG, Donahue MJ (2004) Velocity of transverse domain wall motion along thin, narrow strips. J Appl Phys 95(11):6729–6731. doi: 10.1063/1.1688673 ADSCrossRefGoogle Scholar
  199. 199.
    Allende S, Arias R Transverse domain wall propagation in modulated cylindrical nanostructures and possible geometric control. Phys Rev B 83(17):11. doi: 10.1103/PhysRevB.83.174452
  200. 200.
    Pitzschel K, Bachmann J, Martens S, Montero-Moreno JM, Kimling J, Meier G, Escrig J, Nielsch K, Gorlitz D (2012) Magnetic reversal of cylindrical nickel nanowires with modulated diameters. J Appl Phys 109(3):6. doi: 10.1063/1.3544036 Google Scholar
  201. 201.
    Berger L (1984) Exchange interaction between ferromagnetic domain wall and electric current in very thin metallic films. J Appl Phys 55(6):1954–1956ADSCrossRefGoogle Scholar
  202. 202.
    Berger L (1992) Motion of a magnetic domain-wall traversed by fast-rising current pulses. J Appl Phys 71(6):2721–2726ADSCrossRefGoogle Scholar
  203. 203.
    Wolf SA, Treger D, Chtchelkanova A (2006) Spintronics: the future of data storage. MRS Bull 31(5):400–403CrossRefGoogle Scholar
  204. 204.
    Tatara G, Kohno H (2004) Theory of current-driven domain wall motion: Spin transfer versus momentum transfer. Phys Rev Lett 92(8):Art no 086601. doi:  10.1103/PhysRevLett.92.086601
  205. 205.
    Zhang S, Li Z (2004) Roles of nonequilibrium conduction electrons on the magnetization dynamics of ferromagnets. Phys Rev Lett 93(12):Art no 127204Google Scholar
  206. 206.
    Thiaville A, Nakatani Y, Miltat J, Suzuki Y (2005) Micromagnetic understanding of current-driven domain wall motion in patterned nanowires. Europhys Lett 69(6):990–996. doi: 10.1209/epl/i2004-10452-6 ADSCrossRefGoogle Scholar
  207. 207.
    Barnes SE, Maekawa S (2005) Current-spin coupling for ferromagnetic domain walls in fine wires. Phys Rev Lett 95 (10):Art no 107204Google Scholar
  208. 208.
    Berger L (2006) Analysis of measured transport properties of domain walls in magnetic nanowires and films. Phys Rev B 73(1):Art no 014407. doi: 10.1103/PhysRevB.73.014407
  209. 209.
    Yamaguchi A, Ono T, Nasu S, Miyake K, Mibu K, Shinjo T (2004) Real-space observation of current-driven domain wall motion in submicron magnetic wires. Phys Rev Lett 92(7):Art no 077205Google Scholar
  210. 210.
    Vernier N, Allwood DA, Atkinson D, Cooke MD, Cowbu RP (2004) Domain wall propagation in magnetic nanowires by spin-polarized current injection. Europhys Lett 65(4):526–532ADSCrossRefGoogle Scholar
  211. 211.
    Klaui M, Jubert PO, Allenspach R, Bischof A, Bland JAC, Faini G, Rudiger U, Vaz CAF, Vila L, Vouille C (2005) Direct observation of domain-wall configurations transformed by spin currents. Phys Rev Lett 95(2):Art no 026601. doi: 10.1103/PhysRevLett.95.026601
  212. 212.
    Beach GSD, Knutson C, Nistor C, Tsoi M, Erskine JL (2006) Nonlinear domain-wall velocity enhancement by spin-polarized electric current. Phys Rev Lett 97 (5):Art no 057203. doi: 10.1103/PhysRevLett.97.057203
  213. 213.
    Meier G, Bolte M, Eiselt R, Kruger B, Kim DH, Fischer P (2007) Direct imaging of stochastic domain-wall motion driven by nanosecond current pulses. Phys Rev Lett 98 (18):Art no 187202. doi: 10.1103/PhysRevLett.98.187202
  214. 214.
    Hankemeier S, Sachse K, Stark Y, Fromter R, Oepen HP (2008) Ultrahigh current densities in permalloy nanowires on diamond. Appl Phys Lett 92(24):Art no 242503. doi: 10.1063/1.2937842
  215. 215.
    Thomson T, Abelman L, Groenland H (2008) Magnetic storage: past, present and future. In: Azzerboni B, Asti G, Pareti L, Ghidini M (eds) Magnetic nanostructures in modern technology. Springer, Dordrecht, pp 237–306Google Scholar
  216. 216.
    Sharrock MP (1989) Particulate magnetic recording media—a review. IEEE Trans Magn 25(6):4374–4389. doi: 10.1109/20.45317 ADSCrossRefGoogle Scholar
  217. 217.
    Cullity BD (1972) Introduction to magnetic materials. Addison-Wesley PublGoogle Scholar
  218. 218.
    Parkin SSP, Hayashi M, Thomas L (2008) Magnetic domain-wall racetrack memory. Science 320(5873):190–194. doi: 10.1126/science.1145799 ADSCrossRefGoogle Scholar
  219. 219.
    Freitas PP, Ferreira H, Cardoso S, van Dijken S, Gregg J (2006) Nanostructures for spin electronics. In: Sellmyer D, Skomski R (eds) Advanced magnetic nanostructures. Springer, New York, pp 403–460Google Scholar
  220. 220.
    Nikiforov VN, Filinova EY (2009) Biomedical applications of magnetic nanoparticles. In: Gubin SP (ed) Magnetic nanoparticles .Wiley-VCH Verlag GmbH & Co KGaA, Weinheim, pp 393–455Google Scholar
  221. 221.
    Qiao RR, Yang CH, Gao MY (2009) Superparamagnetic iron oxide nanoparticles: from preparations to in vivo MRI applications. J Mater Chem 19(35):6274–6293. doi: 10.1039/b902394a CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.NanostructuresIstituto Italiano di TecnologiaGenovaItaly
  2. 2.NanochemistryIstituto Italiano di TecnologiaGenovaItaly
  3. 3.National Nanotechnology Laboratory (NNL)Nanoscience Institute of CNRLecceItaly
  4. 4.Departament de Química Inorgànica—Institut de Nanociència i Nanotecnologia (IN2UB)Universitat de BarcelonaBarcelonaSpain
  5. 5.Department of ChemistryUniversity of DelhiDelhiIndia

Personalised recommendations