Optical Properties of Metal Nanorods

Part of the NanoScience and Technology book series (NANO)


This chapter deals with the optical properties of elongated metallic nanoparticles. Metal nanostructures in general interact strongly with the electromagnetic radiation. This interaction can cause the collective excitation of free carriers, leading to the so-called localized surface plasmon resonances, but also induce electronic transitions of bound electrons from occupied to empty bands, and additionally scattering, as free carriers in the nanostructure are accelerated and start radiating. We will analyze both the far field and the near field behavior of metal nanoparticles, and how this is influenced by the nanoparticle size and especially by its shape. Our focus will be clearly on rods and wires and we will highlight both experimental and theoretical/computational approaches. The chapter will additionally touch aspects related to ultrafast electron dynamics in these systems and will give a brief overview on applications, such as metal enhanced fluorescence and surface enhanced Raman scattering.


Gold Nanoparticles Surface Enhance Raman Scattering Dielectric Function Field Enhancement Interband Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Klimov V (2004) Semiconductor and metal nanocrystals. Marcel Dekker, New YorkGoogle Scholar
  2. 2.
    Noguez C (2005) Optical properties of isolated and supported metal nanoparticles. Opt Mater 27(7):1204–1211ADSCrossRefGoogle Scholar
  3. 3.
    Link S, El-Sayed MA (2000) Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Intern Rev Phys Chem 19(3):409–453CrossRefGoogle Scholar
  4. 4.
    Perez-Juste J, Pastoriza-Santos I, Liz-Marzan LM, Mulvaney P (2005) Gold nanorods: synthesis, characterization and applications. Coord Chem Rev 249(17–18):1870–1901CrossRefGoogle Scholar
  5. 5.
    Schwartzberg AM, Olson TY, Talley CE, Zhang JZ (2006) Synthesis, characterization, and tunable optical properties of hollow gold nanospheres. J Phys Chem B 110(40):19935–19944CrossRefGoogle Scholar
  6. 6.
    Zhang JZ, Noguez C (2008) Plasmonic optical properties and applications of metal nanostructures. Plasmonics 3(4):127–150CrossRefGoogle Scholar
  7. 7.
    Gonzalez AL, Reyes-Esqueda JA, Noguez C (2008) Optical properties of elongated noble metal nanoparticles. J Phys Chem C 112(19):7356–7362CrossRefGoogle Scholar
  8. 8.
    Myroshnychenko V, Rodriguez-Fernandez J, Pastoriza-Santos I, Funston AM, Novo C, Mulvaney P, Liz-Marzan LM, de Abajo FJG (2008) Modelling the optical response of gold nanoparticles. Chem Soc Rev 37(9):1792–1805CrossRefGoogle Scholar
  9. 9.
    Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107(3):668–677CrossRefGoogle Scholar
  10. 10.
    Meier M (2007) Plasmonics: fundamentals and applications. Springer, BerlinGoogle Scholar
  11. 11.
    Link S, El-Sayed MA (2003) Optical properties and ultrafast dynamics of metallic nanocrystals. Ann Rev Phys Chem 54:331–366ADSCrossRefGoogle Scholar
  12. 12.
    Huang X, Neretina S, El-Sayed MA (2009) Gold nanorods: from synthesis and properties to biological and biomedical applications. Adv Mater 21:4880–4910. doi: 10.1002/adma.200802789 CrossRefGoogle Scholar
  13. 13.
    Liz-Marzan LM (2006) Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir 22:32–41. doi: 10.1021/la0513353 CrossRefGoogle Scholar
  14. 14.
    Noguez C (2007) Surface plasmons on metal nanoparticles: the influence of shape and physical environment. J Phys Chem C 111(10):3806–3819CrossRefGoogle Scholar
  15. 15.
    Bohren CF, Huffman DR (1998) Absorption and scattering of light by small particles. Wiley, New YorkCrossRefGoogle Scholar
  16. 16.
    Ashroft NW, Mermin ND (1976) Solid State Physics. Brooks Cole, BelmontGoogle Scholar
  17. 17.
    Kreibig U (1974) Electronic properties of small silver particles: the optical constants and their temperature dependence. J Phys F 4:999–1014ADSCrossRefGoogle Scholar
  18. 18.
    Mie G (1908) Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann Physik 25:377–445ADSzbMATHCrossRefGoogle Scholar
  19. 19.
    Baida H, Billaud P, Marhaba S, Christofilos D, Cottancin E, Crut A, Lerme J, Maioli P, Pellarin M, Broyer M, Del Fatti N, Vallee F (2009) Quantitative determination of the size dependence of surface plasmon resonance damping in single Ag@SiO2 nanoparticles. Nano Lett 9(10):3463–3469ADSCrossRefGoogle Scholar
  20. 20.
    de Heer WA (1993) The physics of simple metal-clusters—experimental aspects and simple-models. Rev Mod Phys 65:611–676ADSCrossRefGoogle Scholar
  21. 21.
    Brack M (1993) The physics of simple metal clusters: self-consistent jellium model and semiclassical approaches. Rev Mod Phys 65:677–732ADSCrossRefGoogle Scholar
  22. 22.
    Liebsch A (1997) Electronic excitations at metal surfaces. Plenum Press, New YorkCrossRefGoogle Scholar
  23. 23.
    Meier M, Wokaun A (1983) Enhanced fields on large metal particles: dynamic depolarization. Opt Lett 8(11):581–583ADSCrossRefGoogle Scholar
  24. 24.
    Landau LD, Pitaevskii LP, Lifshitz EM (2004) Electrodynamics of continuous media, 2nd edn, vol 8. Elsevier Butterworth-Einemann, LondonGoogle Scholar
  25. 25.
    Moroz A (2009) Depolarization field of spheroidal particles. J Opt Soc Am B 26(3):517–527MathSciNetADSCrossRefGoogle Scholar
  26. 26.
    Kuwata H, Tamaru H, Esumi K, Miyano K (2003) Resonant light scattering from metal nanoparticles: practical analysis beyond Rayleigh approximation. Appl Phys Lett 83(22):4625–4627ADSCrossRefGoogle Scholar
  27. 27.
    Gans R (1912) Über die form ultramikroskopischer goldteilchen. Ann Physik 342(5):881–900ADSCrossRefGoogle Scholar
  28. 28.
    Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6(12):4370–4379ADSCrossRefGoogle Scholar
  29. 29.
    Wilson O, Wilson GJ, Mulvaney P (2002) Laser writing in polarized silver nanorod films. Adv Mater 14(13–14):1000–1004Google Scholar
  30. 30.
    Sonnichsen C, Franzl T, Wilk T, von Plessen G, Feldmann J, Wilson O, Mulvaney P (2002) Drastic reduction of plasmon damping in gold nanorods. Phys Rev Lett 88 (7):077402Google Scholar
  31. 31.
    Sando GM, Berry AD, Campbell PM, Baronavski AP, Owrutsky JC (2007) Surface plasmon dynamics of high-aspect-ratio gold nanorods. Plasmonics 2(1):23–29CrossRefGoogle Scholar
  32. 32.
    Brebbia CA, Dominquez J (1992) Boundary elements: an introductory course. Computational Mechanics, SouthamptonGoogle Scholar
  33. 33.
    Ramdas Ram-Mohan L (2002) Finite element and boundary element applications in quantum mechanics. Oxford University Press, OxfordGoogle Scholar
  34. 34.
    Rockstuhl C, Salt MG, Herzig HP (2003) Application of the boundary-element method to the interaction of light with single and coupled metallic nanoparticles. J Opt Soc Am A 20(10):1969–1973ADSCrossRefGoogle Scholar
  35. 35.
    de Abajo FJG, Howie A (1998) Relativistic electron energy loss and electron-induced photon emission in lymphogenous dielectrics. Phys Rev Lett 80(23):5180–5183ADSCrossRefGoogle Scholar
  36. 36.
    de Abajo FJG, Howie A (2002) Retarded field calculation of electron energy loss in inhomogeneous dielectrics. Phys Rev B 65 (11):115418Google Scholar
  37. 37.
    Aizpurua J, Bryant GW, Richter LJ, de Abajo FJG, Kelley BK, Mallouk T (2005) Optical properties of coupled metallic nanorods for field-enhanced spectroscopy. Phys Rev B 71 (23):235420Google Scholar
  38. 38.
    Pastoriza-Santos I, Liz-Marzan LM (2008) Colloidal silver nanoplates. State of the art and future challenges. J Mater Chem 18 (15):1724–1737Google Scholar
  39. 39.
    Bryant GW, De Abajo FJG, Aizpurua J (2008) Mapping the plasmon resonances of metallic nanoantennas. Nano Lett 8(2):631–636ADSCrossRefGoogle Scholar
  40. 40.
    Goodman JJ, Draine BT, Flatau PJ (1991) Application of fast-fourier-transform techniques to the discrete-dipole approximation. Opt Lett 16(15):1198–1200ADSCrossRefGoogle Scholar
  41. 41.
    Jensen T, Kelly L, Lazarides A, Schatz GC (1999) Electrodynamics of noble metal nanoparticles and nanoparticle clusters. J Clust Sci 10(2):295–317CrossRefGoogle Scholar
  42. 42.
    Hao E, Schatz GC (2004) Electromagnetic fields around silver nanoparticles and dimers. J Chem Phys 120(1):357–366ADSCrossRefGoogle Scholar
  43. 43.
    Gai PL, Harmer MA (2002) Surface atomic defect structures and growth of gold nanorods. Nano Lett 2(7):771–774ADSCrossRefGoogle Scholar
  44. 44.
    Wang ZL, Mohamed MB, Link S, El-Sayed MA (1999) Crystallographic facets and shapes of gold nanorods of different aspect ratios. Surf Sci 440(1–2):L809–L814CrossRefGoogle Scholar
  45. 45.
    Guo HY, Ruan FX, Lu LH, Hu JW, Pan JA, Yang ZL, Ren B (2009) Correlating the shape, surface plasmon resonance, and surface-enhanced raman scattering of gold nanorods. J Phys Chem C 113(24):10459–10464CrossRefGoogle Scholar
  46. 46.
    Slaughter LS, Chang WS, Swanglap P, Tcherniak A, Khanal BP, Zubarev ER, Link S (2010) Single-particle spectroscopy of gold nanorods beyond the quasi-static limit: varying the width at constant aspect ratio. J Phys Chem C 114(11):4934–4938CrossRefGoogle Scholar
  47. 47.
    Schmucker AL, Harris N, Banholzer MJ, Blaber MG, Osberg KD, Schatz GC, Mirkin CA (2010) Correlating nanorod structure with experimentally measured and theoretically predicted surface plasmon resonance. ACS Nano 4 (9):5453–5463 Google Scholar
  48. 48.
    Lee KS, El-Sayed MA (2005) Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index. J Phys Chem B 109(43):20331–20338CrossRefGoogle Scholar
  49. 49.
    Anisimov SI, Kapeliovich BL, Perel'man TL (1975) Electron emission from metal surfaces exposed to ultrashort laser pulses. Sov Phys JETP 39:375–377ADSGoogle Scholar
  50. 50.
    El-Sayed MA, Norris TB, Pessot MA, Mourou GA (1987) Time-resolved observation of electron-phonon relaxation in copper. Phys Rev Lett 58(12):1212–1215ADSCrossRefGoogle Scholar
  51. 51.
    Sun CK, Vallee F, Acioli LH, Ippen EP, Fujimoto JG (1994) Femtosecond-tunable measurement of electron thermalization in gold. Phys Rev B 50(20):15337–15348ADSCrossRefGoogle Scholar
  52. 52.
    Del Fatti N, Voisin C, Achermann M, Tzortzakis S, Christofilos D, Vallee F (2000) Nonequilibrium electron dynamics in noble metals. Phys Rev B 61(24):16956–16966ADSCrossRefGoogle Scholar
  53. 53.
    Link S, Burda C, Wang ZL, El-Sayed MA (1999) Electron dynamics in gold and gold-silver alloy nanoparticles: the influence of a nonequilibrium electron distribution and the size dependence of the electron-phonon relaxation. J Chem Phys 111(3):1255–1264ADSCrossRefGoogle Scholar
  54. 54.
    Smith BA, Zhang JZ, Giebel U, Schmid G (1997) Direct probe of size-dependent electronic relaxation in single-sized Au and nearly monodisperse Pt colloidal nano-particles. Chem Phys Lett 270(1–2):139–144ADSCrossRefGoogle Scholar
  55. 55.
    Grant CD, Schwartzberg AM, Yang YY, Chen SW, Zhang JZ (2004) Ultrafast study of electronic relaxation dynamics in Au-11 nanoclusters. Chem Phys Lett 383(1–2):31–34ADSCrossRefGoogle Scholar
  56. 56.
    Hodak JH, Henglein A, Hartland GV (2000) Electron-phonon coupling dynamics in very small (between 2 and 8 nm diameter) Au nanoparticles. J Chem Phys 112(13):5942–5947ADSCrossRefGoogle Scholar
  57. 57.
    Link S, El-Sayed MA (1999) Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J Phys Chem B 103(40):8410–8426CrossRefGoogle Scholar
  58. 58.
    Link S, Furube A, Mohamed MB, Asahi T, Masuhara H, El-Sayed MA (2002) Hot electron relaxation dynamics of gold nanoparticles embedded in MgSO4 powder compared to solution: the effect of the surrounding medium. J Phys Chem B 106(5):945–955CrossRefGoogle Scholar
  59. 59.
    Stella A, Nisoli M, DeSilvestri S, Svelto O, Lanzani G, Cheyssac P, Kofman R (1996) Size effects in the ultrafast electronic dynamics of metallic tin nanoparticles. Phys Rev B 53(23):15497–15500ADSCrossRefGoogle Scholar
  60. 60.
    Hu M, Hartland GV (2002) Heat dissipation for Au particles in aqueous solution: relaxation time versus size. J Phys Chem B 106(28):7029–7033CrossRefGoogle Scholar
  61. 61.
    Hodak JH, Martini I, Hartland GV (1998) Spectroscopy and dynamics of nanometer-sized noble metal particles. J Phys Chem B 102(36):6958–6967CrossRefGoogle Scholar
  62. 62.
    Bullen KE (1985) An introduction to seismology, 4th edn. Cambridge University Press, CambridgezbMATHGoogle Scholar
  63. 63.
    Hu M, Wang X, Hartland GV, Mulvaney P, Juste JP, Sader JE (2003) Vibrational response of nanorods to ultrafast laser induced heating: theoretical and experimental analysis. J Am Chem Soc 125(48):14925–14933CrossRefGoogle Scholar
  64. 64.
    Perner M, Gresillon S, Marz J, von Plessen G, Feldmann J, Porstendorfer J, Berg KJ, Berg G (2000) Observation of hot-electron pressure in the vibration dynamics of metal nanoparticles. Phys Rev Lett 85(4):792–795ADSCrossRefGoogle Scholar
  65. 65.
    von Plessen G, Perner M, Feldmann J (2000) Ultrafast relaxation dynamics of electronic excitations in noble-metal clusters. Appl Phys B 71(3):381–384ADSCrossRefGoogle Scholar
  66. 66.
    Hartland GV, Hu M, Wilson O, Mulvaney P, Sader JE (2002) Coherent excitation of vibrational modes in gold nanorods. J Phys Chem B 106(4):743–747CrossRefGoogle Scholar
  67. 67.
    Jain PK, Huang WY, El-Sayed MA (2007) On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation. Nano Lett 7(7):2080–2088ADSCrossRefGoogle Scholar
  68. 68.
    Hao E, Schatz GC, Hupp JT (2004) Synthesis and optical properties of anisotropic metal nanoparticles. J Fluoresc 14(4):331–341CrossRefGoogle Scholar
  69. 69.
    Gersten JI (1980) The effect of surface roughness on surface enhanced Raman scattering. J Chem Phys 72:5779ADSCrossRefGoogle Scholar
  70. 70.
    Zuloaga J, Prodan E, Nordlander P (2010) Quantum plasmonics: optical properties and tunability of metallic nanorods. ACS Nano 4(9):5269–5276Google Scholar
  71. 71.
    Nelayah J, Kociak M, Stephan O, Garcia de Abajo FJ, Tence´ M, Henrard L, Taverna D, Pastoriza-Santos I, Liz-Marzan LM, Colliex C (2007) Mapping surface plasmons on a single metallic nanoparticle. Nat Phys 3:348–353Google Scholar
  72. 72.
    Bosman M, Keast VJ, Watanabe M, Maaroof AI, Cortie MB (2007) Mapping surface plasmons at the nanometre scale with an electron beam. Nanotechnology 18(16):165505 Google Scholar
  73. 73.
    N’Gom M, Ringnalda J, Mansfield JF, Agarwal A, Kotov NA, Zaluzec NJ, Norris TB (2008) Single particle plasmon spectroscopy of silver nanowires and gold nanorods. Nano Lett 8(10):3200–3204ADSCrossRefGoogle Scholar
  74. 74.
    Schaffer B, Grogger W, Kothleitner G, Hofer F (2010) Comparison of EFTEM and STEM EELS plasmon imaging of gold nanoparticles in a monochromated TEM. Ultramicroscopy 110(8):1087–1093CrossRefGoogle Scholar
  75. 75.
    N’Gom M, Li S, Schatz GC, Erni R, Agarwal A, Kotov NA, Norris TB (2009) Electron-beam mapping of plasmon resonances in electromagnetically interacting gold nanorods. Phys Rev B 80:113411Google Scholar
  76. 76.
    Koh AL, Bao K, Khan I, Smith WE, Kothleitner G, Nordlander P, Maier SA, McComb DW (2009) Electron energy-loss spectroscopy (EELS) of surface plasmons in single silver nanoparticles and dimers: influence of beam damage and mapping of dark modes. ACS Nano 3(10):3015–3022CrossRefGoogle Scholar
  77. 77.
    Lakowicz JR, Geddes CD, Gryczynski I, Malicka J, Gryczynski Z, Aslan K, Lukomska J, Matveeva E, Zhang JA, Badugu R, Huang J (2004) Advances in surface-enhanced fluorescence. J Fluoresc 14(4):425–441CrossRefGoogle Scholar
  78. 78.
    Aslan K, Gryczynski I, Malicka J, Matveeva E, Lakowicz JR, Geddes CD (2005) Metal-enhanced fluorescence: an emerging tool in biotechnology. Curr Opin Biotech 16(1):55–62CrossRefGoogle Scholar
  79. 79.
    Mohammadi A, Sandoghdar V, Agio M (2008) Gold nanorods and nanospheroids for enhancing spontaneous emission. New J Phys 10:105015Google Scholar
  80. 80.
    Mohammadi A, Kaminski F, Sandoghdar V, Agio M (2010) Fluorescence enhancement with the optical (bi-) conical antenna. J Phys Chem C 114(16):7372–7377CrossRefGoogle Scholar
  81. 81.
    Bardhan R, Grady NK, Cole JR, Joshi A, Halas NJ (2009) Fluorescence enhancement by au nanostructures: nanoshells and nanorods. ACS Nano 3(3):744–752CrossRefGoogle Scholar
  82. 82.
    Mohammadi A, Sandoghdar V, Agio M (2009) Gold, copper, silver and aluminum nanoantennas to enhance spontaneous emission. J Comp Theor Nanosci 6(9):2024–2030CrossRefGoogle Scholar
  83. 83.
    Bharadwaj P, Deutsch B, Novotny L (2009) Optical antennas. Adv Opt Phot 1:438–483CrossRefGoogle Scholar
  84. 84.
    Albrecht MG, Creighton JA (1977) Anomalously intense Raman spectra of pyridine at a silver electrode. J Am Chem Soc 99:5215–5217CrossRefGoogle Scholar
  85. 85.
    Jeannaire DL, Van Duyne RP (1977) Surface Raman spectroelectrochemistry: part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J Electroanal Chem 84:1–20CrossRefGoogle Scholar
  86. 86.
    Moskovits M (1978) Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals. J Chem Phys 69:4159ADSCrossRefGoogle Scholar
  87. 87.
    Schatz GC (1984) Theoretical studies of surface enhanced Raman scattering. Acc Chem Res 17:370–376CrossRefGoogle Scholar
  88. 88.
    Schwartzberg AM, Zhang JZ (2008) Novel optical properties and emerging applications of metal nanostructures. J Phys Chem C 112(28):10323–10337CrossRefGoogle Scholar
  89. 89.
    Rodriguez-Fernandez J, Funston AM, Perez-Juste J, Alvarez-Puebla RA, Liz-Marzan LM, Mulvaney P (2009) The effect of surface roughness on the plasmonic response of individual sub-micron gold spheres. Phys Chem Chem Phys 11(28):5909–5914CrossRefGoogle Scholar
  90. 90.
    Mohamed MB, Volkov V, Link S, El-Sayed MA (2000) The ‘lightning’ gold nanorods: fluorescence enhancement of over a million compared to the gold metal. Chem Phys Lett 317(6):517–523ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.NanostructuresIstituto Italiano di TecnologiaGenovaItaly
  2. 2.NanochemistryIstituto Italiano di TecnologiaGenovaItaly
  3. 3.National Nanotechnology Laboratory (NNL)Nanoscience Institute of CNRLecceItaly
  4. 4.Departament de Química Inorgànica—Institut de Nanociència i Nanotecnologia (IN2UB)Universitat de BarcelonaBarcelonaSpain
  5. 5.Department of ChemistryUniversity of DelhiDelhiIndia

Personalised recommendations