Skip to main content

Electrical Properties of Nanorods

  • Chapter
  • First Online:
Physical Properties of Nanorods

Abstract

In this chapter we will discuss electrical properties of nanorods both on a single particle level and for nanorod assemblies and thin films consisting of densely aggregated nanorods. We will deal only with semiconductor nanorods, and, like in the previous chapter, we will focus mostly on the CdSe material system as an example to explain the physical properties, since CdSe nanorods have been studied in great detail. We will not discuss explicitly the electrical properties of metallic nanorods, but we treat the double barrier tunnel junction Double Barrier Tunnel Junction (DBTJ) configuration and Coulomb blockade effects, which are the major factors that dominate the conductive behavior of metal nanostructures. Different contact schemes to single nanorods and their ensembles will be discussed, comprising vertical scanning probe experiments and planar electrode geometries, in both weak and strong coupling regimes. The intrinsic interfaces in hybrid metal–semiconductor nanostructures such as nanodumbbells and nanorod networks are described in terms of Schottky contacts. Photoconductivety of nanorod films is reviewed with perspective to solar cell applications, and finally the thermoelectric properties of quasi one-dimensional nanoparticles is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Porath D, Levi Y, Tarabiah M, Millo O (1997) Tunneling spectroscopy of isolated C-60 molecules in the presence of charging effects. Phys Rev B 56(15):9829–9833

    Article  ADS  Google Scholar 

  2. Huynh WU, Dittmer JJ, Alivisatos AP (2002) Hybrid nanorod-polymer solar cells. Science 295(5564):2425–2427

    Article  ADS  Google Scholar 

  3. Huynh WU, Dittmer JJ, Teclemariam N, Milliron DJ, Alivisatos AP, Barnham KWJ (2003) Charge transport in hybrid nanorod-polymer composite photovoltaic cells. Phys Rev B67(11):art. n. 115326

    Google Scholar 

  4. Steiner D, Azulay D, Aharoni A, Salant A, Banin U, Millo O (2009) Photoconductivity in aligned CdSe nanorod arrays. Phys Rev B 80(19):art. n. 195308

    Google Scholar 

  5. Persano A, De Giorgi M, Fiore A, Cingolani R, Manna L, Cola A, Krahne R (2010) Photoconduction properties in aligned assemblies of colloidal CdSe/CdS nanorods. ACS Nano 4(3):1646–1652

    Article  Google Scholar 

  6. Rizzo A, Nobile C, Mazzeo M, De Giorgi M, Fiore A, Carbone L, Cingolani R, Manna L, Gigli G (2009) Polarized light emitting diode by long-range nanorod self-assembling on a water surface. ACS Nano 3(6):1506–1512

    Article  Google Scholar 

  7. Millo O, Katz D, Steiner D, Rothenberg E, Mokari T, Kazes M, Banin U (2004) Charging and quantum size effects in tunnelling and optical spectroscopy of CdSe nanorods. Nanotechnology 15(1):R1–R6

    Article  ADS  Google Scholar 

  8. Steiner D, Katz D, Millo O, Aharoni A, Kan S, Mokari T, Banin U (2004) Zero-dimensional and quasi one-dimensional effects in semiconductor nanorods. Nano Lett 4(6):1073–1077

    Article  ADS  Google Scholar 

  9. Hanna AE, Tinkham M (1991) Variation of the Coulomb staircase in a two-junction system by fractional electron charge. Phys Rev B 44:5919–5922

    Article  ADS  Google Scholar 

  10. Banin U, Millo O (2003) Tunneling and optical spectroscopy of semiconductor nanocrystals. Ann Rev Phys Chem 54:465–492

    Article  ADS  Google Scholar 

  11. Sun ZX, Swart I, Delerue C, Vanmaekelbergh D, Liljeroth P (2009) Orbital and Charge-Resolved Polaron States in CdSe Dots and Rods Probed by Scanning Tunneling Spectroscopy. Phys Rev Lett 102(19):196401

    Google Scholar 

  12. Katz D, Wizansky T, Millo O, Rothenberg E, Mokari T, Banin U (2002) Size-dependent tunneling and optical spectroscopy of CdSe quantum rods. Phys Rev Lett 89(8):art. n. 086801

    Google Scholar 

  13. Shabaev A, Efros AL, Nozik AJ (2006) Multiexciton generation by a single photon in nanocrystals. Nano Lett 6(12):2856–2863

    Article  ADS  Google Scholar 

  14. Steiner D, Dorfs D, Banin U, Della Sala F, Manna L, Millo O (2008) Determination of band offsets in heterostructured colloidal nanorods using scanning tunneling spectroscopy. Nano Lett 8(9):2954–2958. doi:10.1021/nl801848x

    Article  ADS  Google Scholar 

  15. Sitt A, Della Sala F, Menagen G, Banin U (2009) Multiexciton engineering in seeded core/shell nanorods: transfer from type-I to quasi-type-II regimes. Nano Lett 9(10):3470–3476

    Article  ADS  Google Scholar 

  16. Sheldon MT, Trudeau P-E, Mokari T, Wang L-W, Alivisatos AP (2009) Enhanced semiconductor nanocrystal conductance via solution grown contacts. Nano Lett 9(11):3676–3682

    Article  Google Scholar 

  17. Trudeau PE, Sheldon M, Altoe V, Alivisatos AP (2008) Electrical contacts to individual colloidal semiconductor nanorods. Nano Lett 8(7):1936–1939. doi:10.1021/nl080678t

    Article  ADS  Google Scholar 

  18. Gudiksen MS, Maher KN, Ouyang L, Park H (2005) Electroluminescence from a single-nanocrystal transistor. Nano Lett 5(11):2257–2261

    Article  ADS  Google Scholar 

  19. Cui Y, Banin U, Bjork MT, Alivisatos AP (2005) Electrical transport through a single nanoscale semiconductor branch point. Nano Lett 5(7):1519–1523

    Article  ADS  Google Scholar 

  20. Steinberg H, Lilach Y, Salant A, Wolf O, Faust A, Millo O, Banin U (2009) Anomalous temperature dependent transport through single colloidal nanorods strongly coupled to metallic leads. Nano Lett 9(11):3671–3675

    Article  Google Scholar 

  21. Leonard F, Talin AA (2006) Size-dependent effects on electrical contacts to nanotubes and nanowires. Phys Rev Lett 97(2):art. n. 026804

    Google Scholar 

  22. Demchenko DO, Wang LW (2007) Localized electron states near a metal/semiconductor nanocontact. Nano Lett 7(10):3219–3222. doi:10.1021/nl072027n

    Article  ADS  Google Scholar 

  23. Wolf E (1989) Principles of electron tunneling spectroscopy. Oxford University Press, Oxford

    Google Scholar 

  24. Fowler RH, Nordheim DL (1928) Electron emission in intense electric fields. Proc Roy Soc London Ser A Math Phys Eng Sci 119(781):173–181

    Article  ADS  MATH  Google Scholar 

  25. Varshni YP (1967) Physica 34:149–154

    Article  ADS  Google Scholar 

  26. Coe S, Woo WK, Bawendi M, Bulovic V (2002) Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature 420(6917):800–803

    Article  ADS  Google Scholar 

  27. Doh YJ, Maher KN, Ouyang L, Yu CL, Park H, Park J (2008) Electrically driven light emission from individual CdSe nanowires. Nano Lett 8(12):4552–4556

    Article  ADS  Google Scholar 

  28. Carbone L, Kudera S, Giannini C, Ciccarella G, Cingolani R, Cozzoli PD, Manna L (2006) Selective reactions on the tips of colloidal semiconductor nanorods. J Mater Chem 16(40):3952–3956

    Article  Google Scholar 

  29. Costi R, Saunders AE, Banin U (2010) Colloidal hybrid nanostructures: a new type of functional materials. Angew ChemInt Edit 49(29):4878–4897

    Article  Google Scholar 

  30. Steiner D, Mokari T, Banin U, Millo O (2005) Electronic structure of metal-semiconductor nanojunctions in gold CdSe nanodumbbells. Phys Rev Lett 95(5):art. n. 056805

    Google Scholar 

  31. Costi R, Saunders AE, Elmalem E, Salant A, Banin U (2008) Visible light-induced charge retention and photocatalysis with hybrid CdSe-Au nanodumbbells. Nano Lett 8(2):637–641

    Article  ADS  Google Scholar 

  32. Costi R, Cohen G, Salant A, Rabani E, Banin U (2009) Electrostatic force microscopy study of single Au-CdSe hybrid nanodumbbells: evidence for light-induced charge separation. Nano Lett 9(5):2031–2039

    Article  ADS  Google Scholar 

  33. Figuerola A, Di Corato R, Manna L, Pellegrino T (2010) From iron oxide nanoparticles towards advanced iron-based inorganic materials designed for biomedical applications. Pharm Res 62(2):126–143

    Article  Google Scholar 

  34. Lavieville R, Zhang Y, Casu A, Genovese A, Manna L, Di Fabrizio E, Krahne R (2012) Charge transport in nanoscale all-inorganic networks of semiconductor nanorods linked by metal domains. ACS Nano 6(4):2940–2947. doi:10.1021/nn3006625

    Article  Google Scholar 

  35. Figuerola A, Huis MV, Zanella M, Genovese A, Marras S, Falqui A, Zandbergen H, Cingolani R, Manna L (2010) Epitaxial CdSe-Au nanocrystal heterostructures by thermal annealing. Nano Lett 10(8):3028–3036

    Article  ADS  Google Scholar 

  36. Steiner D, Azulay D, Aharoni A, Salant A, Banin U, Millo O (2008) Electronic structure and self-assembly of cross-linked semiconductor nanocrystal arrays. Nanotechnology 19(6):art. n. 065201. doi:10.1088/0957-4484/19/6/065201

  37. Steiner D, Aharoni A, Banin U, Millo O (2006) Level structure of InAs quantum dots in two-dimensional assemblies. Nano Lett 6(10):2201–2205

    Article  ADS  Google Scholar 

  38. Talapin DV, Murray CB (2005) PbSe nanocrystal solids for n- and p-channel thin film field-effect transistors. Science 310(5745):86–89

    Article  ADS  Google Scholar 

  39. Drndic M, Jarosz MV, Morgan NY, Kastner MA, Bawendi MG (2002) Transport properties of annealed CdSe colloidal nanocrystal solids. J Appl Phys 92(12):7498–7503

    Article  ADS  Google Scholar 

  40. Persano A, Leo G, Manna L, Cola A (2008) Charge carrier transport in thin films of colloidal CdSe quantum rods. J Appl Phys 104(7):art. n. 074306

    Google Scholar 

  41. Romero HE, Calusine G, Drndic M (2005) Current oscillations, switching, and hysteresis in CdSe nanorod superlattices. Phys Rev B 72(23):art. n. 235401

    Google Scholar 

  42. Leatherdale CA, Kagan CR, Morgan NY, Empedocles SA, Kastner MA, Bawendi MG (2000) Photoconductivity in CdSe quantum dot solids. Phys Rev B 62(4):2669–2680

    Article  ADS  Google Scholar 

  43. Creti A, Anni M, Zavelani-Rossi M, Lanzani G, Leo G, Della Sala F, Manna L, Lomascolo M (2005) Ultrafast carrier dynamics in core and core/shell CdSe quantum rods: role of the surface and interface defects. Phys Rev B 72(12):art. n. 125346

    Google Scholar 

  44. Franchini IR, Cola A, Rizzo A, Mastria R, Persano A, Krahne R, Genovese A, Falqui A, Baranov D, Gigli G, Manna L (2010) Phototransport in networks of tetrapod-shaped colloidal semiconductor nanocrystals. Nanoscale 2(10):2171–2179. doi:10.1039/C0nr00308e

    Article  ADS  Google Scholar 

  45. Kudera S, Zhang Y, Di Fabrizio E, Manna L, Krahne R (2012) Spatial analysis of the photocurrent generation and transport in semiconductor nanocrystal films. Phys Rev B 86(7):075307

    Article  ADS  Google Scholar 

  46. Ginger DS, Greenham NC (2000) Charge injection and transport in films of CdSe nanocrystals. J Appl Phys 87(3):1361–1368

    Article  ADS  Google Scholar 

  47. Heitbaum M, Glorius F, Escher I (2006) Asymmetric heterogeneous catalysis. Angew ChemInt Edit 45(29):4732–4762. doi:10.1002/anie.200504212

    Google Scholar 

  48. Cuenya BR (2010) Synthesis and catalytic properties of metal nanoparticles: size, shape, support, composition, and oxidation state effects. Thin Solid Films 518(12):3127–3150. doi:10.1016/j.tsf.2010.01.018

    Article  ADS  Google Scholar 

  49. Somorjai GA, Park JY (2008) Molecular factors of catalytic selectivity. Angew ChemInt Edit 47(48):9212–9228. doi:10.1002/anie.200803181

    Article  Google Scholar 

  50. Schierhorn M, Boettcher SW, Peet JH, Matioli E, Bazan GC, Stucky GD, Moskovits M (2010) CdSe nanorods dominate photocurrent of hybrid CdSe, àíP3HT photovoltaic cell. ACS Nano 4(10):6132–6136. doi:10.1021/nn101742c

    Article  Google Scholar 

  51. Gonzalez-Valls I, Lira-Cantu M (2009) Vertically-aligned nanostructures of ZnO for excitonic solar cells: a review. Energy Environ Sci 2(1):19–34. doi:10.1039/b811536b

    Article  Google Scholar 

  52. Astruc D, Lu F, Aranzaes JR (2005) Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis. Angew ChemInt Edit 44(48):7852–7872. doi:10.1002/anie.200500766

    Article  Google Scholar 

  53. Schmid G (1998) Large metal clusters and colloids—metals in the embryonic state. Struct Dyn Prop Disperse Colloidal Syst 111:52–57

    Article  Google Scholar 

  54. Wilson OM, Knecht MR, Garcia-Martinez JC, Crooks RM (2006) Effect of Pd nanoparticle size on the catalytic hydrogenation of allyl alcohol. J Am Chem Soc 128(14):4510–4511. doi:10.1021/ja058217m

    Article  Google Scholar 

  55. Gates BC (1995) Supported metal clusters: synthesis, structure, and catalysis. Chem Rev 95(3):511–522

    Article  Google Scholar 

  56. Stamenkovic VR, Fowler B, Mun BS, Wang GF, Ross PN, Lucas CA, Markovic NM (2007) Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315:493–497. doi:10.1126/science.1135941

    Article  ADS  Google Scholar 

  57. Vogel H (1997) Gerthsen Physik, 19th edn. Springer, Berlin

    Google Scholar 

  58. Hicks LD, Dresselhaus MS (1993) Thermoelectric figure of merit of a one-dimensional conductor. Phys Rev B 47(24):16631–16634

    Article  ADS  Google Scholar 

  59. Lin YM, Sun XZ, Dresselhaus MS (2000) Theoretical investigation of thermoelectric transport properties of cylindrical Bi nanowires. Phys Rev B 62(7):4610–4623

    Article  ADS  Google Scholar 

  60. Zhang GQ, Wang W, Li XG (2008) Enhanced thermoelectric properties of core/shell heterostructure nanowire composites. Adv Mater 20(19):3654–3656

    Article  Google Scholar 

  61. Purkayastha A, Lupo F, Kim S, Borca-Tasciuc T, Ramanath G (2006) Low-temperature, template-free synthesis of single-crystal bismuth telluride nanorods. Adv Mater 18(4):496–500

    Article  Google Scholar 

  62. Liufu SC, Chen LD, Yao Q, Wang CF (2007) Assembly of one-dimensional nanorods into Bi2S3 films with enhanced thermoelectric transport properties. Appl Phys Lett 90(11):art. n. 112106

    Google Scholar 

  63. Purkayastha A, Yan QY, Gandhi DD, Li HF, Pattanaik G, Borca-Tasciuc T, Ravishankar N, Ramanath G (2008) Sequential organic-inorganic templating and thermoelectric properties of high-aspect-ratio single-crystal lead telluride nanorods. Chem Mater 20(15):4791–4793

    Article  Google Scholar 

  64. Zuev YM, Lee JS, Galloy C, Park H, Kim P (2010) Diameter Dependence of the Transport Properties of Antimony Telluride Nanowires. Nano Lett 10(8):3037–3040

    Google Scholar 

  65. Ashroft NW, Mermin ND (1976) Solid state physics. Brooks Cole, Orlando, FL (ISBN 0-03-049346-3)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Krahne .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Krahne, R., Manna, L., Morello, G., Figuerola, A., George, C., Deka, S. (2013). Electrical Properties of Nanorods. In: Physical Properties of Nanorods. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36430-3_3

Download citation

Publish with us

Policies and ethics