Advertisement

Electrical Properties of Nanorods

Chapter
  • 1.4k Downloads
Part of the NanoScience and Technology book series (NANO)

Abstract

In this chapter we will discuss electrical properties of nanorods both on a single particle level and for nanorod assemblies and thin films consisting of densely aggregated nanorods. We will deal only with semiconductor nanorods, and, like in the previous chapter, we will focus mostly on the CdSe material system as an example to explain the physical properties, since CdSe nanorods have been studied in great detail. We will not discuss explicitly the electrical properties of metallic nanorods, but we treat the double barrier tunnel junction Double Barrier Tunnel Junction (DBTJ) configuration and Coulomb blockade effects, which are the major factors that dominate the conductive behavior of metal nanostructures. Different contact schemes to single nanorods and their ensembles will be discussed, comprising vertical scanning probe experiments and planar electrode geometries, in both weak and strong coupling regimes. The intrinsic interfaces in hybrid metal–semiconductor nanostructures such as nanodumbbells and nanorod networks are described in terms of Schottky contacts. Photoconductivety of nanorod films is reviewed with perspective to solar cell applications, and finally the thermoelectric properties of quasi one-dimensional nanoparticles is discussed.

Keywords

Seebeck Coefficient Nanorod Array Highly Orient Pyrolytic Graphite Scanning Tunneling Spectroscopy Valence Band State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Porath D, Levi Y, Tarabiah M, Millo O (1997) Tunneling spectroscopy of isolated C-60 molecules in the presence of charging effects. Phys Rev B 56(15):9829–9833ADSCrossRefGoogle Scholar
  2. 2.
    Huynh WU, Dittmer JJ, Alivisatos AP (2002) Hybrid nanorod-polymer solar cells. Science 295(5564):2425–2427ADSCrossRefGoogle Scholar
  3. 3.
    Huynh WU, Dittmer JJ, Teclemariam N, Milliron DJ, Alivisatos AP, Barnham KWJ (2003) Charge transport in hybrid nanorod-polymer composite photovoltaic cells. Phys Rev B67(11):art. n. 115326Google Scholar
  4. 4.
    Steiner D, Azulay D, Aharoni A, Salant A, Banin U, Millo O (2009) Photoconductivity in aligned CdSe nanorod arrays. Phys Rev B 80(19):art. n. 195308Google Scholar
  5. 5.
    Persano A, De Giorgi M, Fiore A, Cingolani R, Manna L, Cola A, Krahne R (2010) Photoconduction properties in aligned assemblies of colloidal CdSe/CdS nanorods. ACS Nano 4(3):1646–1652CrossRefGoogle Scholar
  6. 6.
    Rizzo A, Nobile C, Mazzeo M, De Giorgi M, Fiore A, Carbone L, Cingolani R, Manna L, Gigli G (2009) Polarized light emitting diode by long-range nanorod self-assembling on a water surface. ACS Nano 3(6):1506–1512CrossRefGoogle Scholar
  7. 7.
    Millo O, Katz D, Steiner D, Rothenberg E, Mokari T, Kazes M, Banin U (2004) Charging and quantum size effects in tunnelling and optical spectroscopy of CdSe nanorods. Nanotechnology 15(1):R1–R6ADSCrossRefGoogle Scholar
  8. 8.
    Steiner D, Katz D, Millo O, Aharoni A, Kan S, Mokari T, Banin U (2004) Zero-dimensional and quasi one-dimensional effects in semiconductor nanorods. Nano Lett 4(6):1073–1077ADSCrossRefGoogle Scholar
  9. 9.
    Hanna AE, Tinkham M (1991) Variation of the Coulomb staircase in a two-junction system by fractional electron charge. Phys Rev B 44:5919–5922ADSCrossRefGoogle Scholar
  10. 10.
    Banin U, Millo O (2003) Tunneling and optical spectroscopy of semiconductor nanocrystals. Ann Rev Phys Chem 54:465–492ADSCrossRefGoogle Scholar
  11. 11.
    Sun ZX, Swart I, Delerue C, Vanmaekelbergh D, Liljeroth P (2009) Orbital and Charge-Resolved Polaron States in CdSe Dots and Rods Probed by Scanning Tunneling Spectroscopy. Phys Rev Lett 102(19):196401Google Scholar
  12. 12.
    Katz D, Wizansky T, Millo O, Rothenberg E, Mokari T, Banin U (2002) Size-dependent tunneling and optical spectroscopy of CdSe quantum rods. Phys Rev Lett 89(8):art. n. 086801Google Scholar
  13. 13.
    Shabaev A, Efros AL, Nozik AJ (2006) Multiexciton generation by a single photon in nanocrystals. Nano Lett 6(12):2856–2863ADSCrossRefGoogle Scholar
  14. 14.
    Steiner D, Dorfs D, Banin U, Della Sala F, Manna L, Millo O (2008) Determination of band offsets in heterostructured colloidal nanorods using scanning tunneling spectroscopy. Nano Lett 8(9):2954–2958. doi: 10.1021/nl801848x ADSCrossRefGoogle Scholar
  15. 15.
    Sitt A, Della Sala F, Menagen G, Banin U (2009) Multiexciton engineering in seeded core/shell nanorods: transfer from type-I to quasi-type-II regimes. Nano Lett 9(10):3470–3476ADSCrossRefGoogle Scholar
  16. 16.
    Sheldon MT, Trudeau P-E, Mokari T, Wang L-W, Alivisatos AP (2009) Enhanced semiconductor nanocrystal conductance via solution grown contacts. Nano Lett 9(11):3676–3682CrossRefGoogle Scholar
  17. 17.
    Trudeau PE, Sheldon M, Altoe V, Alivisatos AP (2008) Electrical contacts to individual colloidal semiconductor nanorods. Nano Lett 8(7):1936–1939. doi: 10.1021/nl080678t ADSCrossRefGoogle Scholar
  18. 18.
    Gudiksen MS, Maher KN, Ouyang L, Park H (2005) Electroluminescence from a single-nanocrystal transistor. Nano Lett 5(11):2257–2261ADSCrossRefGoogle Scholar
  19. 19.
    Cui Y, Banin U, Bjork MT, Alivisatos AP (2005) Electrical transport through a single nanoscale semiconductor branch point. Nano Lett 5(7):1519–1523ADSCrossRefGoogle Scholar
  20. 20.
    Steinberg H, Lilach Y, Salant A, Wolf O, Faust A, Millo O, Banin U (2009) Anomalous temperature dependent transport through single colloidal nanorods strongly coupled to metallic leads. Nano Lett 9(11):3671–3675CrossRefGoogle Scholar
  21. 21.
    Leonard F, Talin AA (2006) Size-dependent effects on electrical contacts to nanotubes and nanowires. Phys Rev Lett 97(2):art. n. 026804Google Scholar
  22. 22.
    Demchenko DO, Wang LW (2007) Localized electron states near a metal/semiconductor nanocontact. Nano Lett 7(10):3219–3222. doi: 10.1021/nl072027n ADSCrossRefGoogle Scholar
  23. 23.
    Wolf E (1989) Principles of electron tunneling spectroscopy. Oxford University Press, OxfordGoogle Scholar
  24. 24.
    Fowler RH, Nordheim DL (1928) Electron emission in intense electric fields. Proc Roy Soc London Ser A Math Phys Eng Sci 119(781):173–181ADSzbMATHCrossRefGoogle Scholar
  25. 25.
    Varshni YP (1967) Physica 34:149–154ADSCrossRefGoogle Scholar
  26. 26.
    Coe S, Woo WK, Bawendi M, Bulovic V (2002) Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature 420(6917):800–803ADSCrossRefGoogle Scholar
  27. 27.
    Doh YJ, Maher KN, Ouyang L, Yu CL, Park H, Park J (2008) Electrically driven light emission from individual CdSe nanowires. Nano Lett 8(12):4552–4556ADSCrossRefGoogle Scholar
  28. 28.
    Carbone L, Kudera S, Giannini C, Ciccarella G, Cingolani R, Cozzoli PD, Manna L (2006) Selective reactions on the tips of colloidal semiconductor nanorods. J Mater Chem 16(40):3952–3956CrossRefGoogle Scholar
  29. 29.
    Costi R, Saunders AE, Banin U (2010) Colloidal hybrid nanostructures: a new type of functional materials. Angew ChemInt Edit 49(29):4878–4897CrossRefGoogle Scholar
  30. 30.
    Steiner D, Mokari T, Banin U, Millo O (2005) Electronic structure of metal-semiconductor nanojunctions in gold CdSe nanodumbbells. Phys Rev Lett 95(5):art. n. 056805Google Scholar
  31. 31.
    Costi R, Saunders AE, Elmalem E, Salant A, Banin U (2008) Visible light-induced charge retention and photocatalysis with hybrid CdSe-Au nanodumbbells. Nano Lett 8(2):637–641ADSCrossRefGoogle Scholar
  32. 32.
    Costi R, Cohen G, Salant A, Rabani E, Banin U (2009) Electrostatic force microscopy study of single Au-CdSe hybrid nanodumbbells: evidence for light-induced charge separation. Nano Lett 9(5):2031–2039ADSCrossRefGoogle Scholar
  33. 33.
    Figuerola A, Di Corato R, Manna L, Pellegrino T (2010) From iron oxide nanoparticles towards advanced iron-based inorganic materials designed for biomedical applications. Pharm Res 62(2):126–143CrossRefGoogle Scholar
  34. 34.
    Lavieville R, Zhang Y, Casu A, Genovese A, Manna L, Di Fabrizio E, Krahne R (2012) Charge transport in nanoscale all-inorganic networks of semiconductor nanorods linked by metal domains. ACS Nano 6(4):2940–2947. doi: 10.1021/nn3006625 CrossRefGoogle Scholar
  35. 35.
    Figuerola A, Huis MV, Zanella M, Genovese A, Marras S, Falqui A, Zandbergen H, Cingolani R, Manna L (2010) Epitaxial CdSe-Au nanocrystal heterostructures by thermal annealing. Nano Lett 10(8):3028–3036ADSCrossRefGoogle Scholar
  36. 36.
    Steiner D, Azulay D, Aharoni A, Salant A, Banin U, Millo O (2008) Electronic structure and self-assembly of cross-linked semiconductor nanocrystal arrays. Nanotechnology 19(6):art. n. 065201. doi: 10.1088/0957-4484/19/6/065201
  37. 37.
    Steiner D, Aharoni A, Banin U, Millo O (2006) Level structure of InAs quantum dots in two-dimensional assemblies. Nano Lett 6(10):2201–2205ADSCrossRefGoogle Scholar
  38. 38.
    Talapin DV, Murray CB (2005) PbSe nanocrystal solids for n- and p-channel thin film field-effect transistors. Science 310(5745):86–89ADSCrossRefGoogle Scholar
  39. 39.
    Drndic M, Jarosz MV, Morgan NY, Kastner MA, Bawendi MG (2002) Transport properties of annealed CdSe colloidal nanocrystal solids. J Appl Phys 92(12):7498–7503ADSCrossRefGoogle Scholar
  40. 40.
    Persano A, Leo G, Manna L, Cola A (2008) Charge carrier transport in thin films of colloidal CdSe quantum rods. J Appl Phys 104(7):art. n. 074306Google Scholar
  41. 41.
    Romero HE, Calusine G, Drndic M (2005) Current oscillations, switching, and hysteresis in CdSe nanorod superlattices. Phys Rev B 72(23):art. n. 235401Google Scholar
  42. 42.
    Leatherdale CA, Kagan CR, Morgan NY, Empedocles SA, Kastner MA, Bawendi MG (2000) Photoconductivity in CdSe quantum dot solids. Phys Rev B 62(4):2669–2680ADSCrossRefGoogle Scholar
  43. 43.
    Creti A, Anni M, Zavelani-Rossi M, Lanzani G, Leo G, Della Sala F, Manna L, Lomascolo M (2005) Ultrafast carrier dynamics in core and core/shell CdSe quantum rods: role of the surface and interface defects. Phys Rev B 72(12):art. n. 125346Google Scholar
  44. 44.
    Franchini IR, Cola A, Rizzo A, Mastria R, Persano A, Krahne R, Genovese A, Falqui A, Baranov D, Gigli G, Manna L (2010) Phototransport in networks of tetrapod-shaped colloidal semiconductor nanocrystals. Nanoscale 2(10):2171–2179. doi: 10.1039/C0nr00308e ADSCrossRefGoogle Scholar
  45. 45.
    Kudera S, Zhang Y, Di Fabrizio E, Manna L, Krahne R (2012) Spatial analysis of the photocurrent generation and transport in semiconductor nanocrystal films. Phys Rev B 86(7):075307ADSCrossRefGoogle Scholar
  46. 46.
    Ginger DS, Greenham NC (2000) Charge injection and transport in films of CdSe nanocrystals. J Appl Phys 87(3):1361–1368ADSCrossRefGoogle Scholar
  47. 47.
    Heitbaum M, Glorius F, Escher I (2006) Asymmetric heterogeneous catalysis. Angew ChemInt Edit 45(29):4732–4762. doi: 10.1002/anie.200504212 Google Scholar
  48. 48.
    Cuenya BR (2010) Synthesis and catalytic properties of metal nanoparticles: size, shape, support, composition, and oxidation state effects. Thin Solid Films 518(12):3127–3150. doi: 10.1016/j.tsf.2010.01.018 ADSCrossRefGoogle Scholar
  49. 49.
    Somorjai GA, Park JY (2008) Molecular factors of catalytic selectivity. Angew ChemInt Edit 47(48):9212–9228. doi: 10.1002/anie.200803181 CrossRefGoogle Scholar
  50. 50.
    Schierhorn M, Boettcher SW, Peet JH, Matioli E, Bazan GC, Stucky GD, Moskovits M (2010) CdSe nanorods dominate photocurrent of hybrid CdSe, àíP3HT photovoltaic cell. ACS Nano 4(10):6132–6136. doi: 10.1021/nn101742c CrossRefGoogle Scholar
  51. 51.
    Gonzalez-Valls I, Lira-Cantu M (2009) Vertically-aligned nanostructures of ZnO for excitonic solar cells: a review. Energy Environ Sci 2(1):19–34. doi: 10.1039/b811536b CrossRefGoogle Scholar
  52. 52.
    Astruc D, Lu F, Aranzaes JR (2005) Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis. Angew ChemInt Edit 44(48):7852–7872. doi: 10.1002/anie.200500766 CrossRefGoogle Scholar
  53. 53.
    Schmid G (1998) Large metal clusters and colloids—metals in the embryonic state. Struct Dyn Prop Disperse Colloidal Syst 111:52–57CrossRefGoogle Scholar
  54. 54.
    Wilson OM, Knecht MR, Garcia-Martinez JC, Crooks RM (2006) Effect of Pd nanoparticle size on the catalytic hydrogenation of allyl alcohol. J Am Chem Soc 128(14):4510–4511. doi: 10.1021/ja058217m CrossRefGoogle Scholar
  55. 55.
    Gates BC (1995) Supported metal clusters: synthesis, structure, and catalysis. Chem Rev 95(3):511–522CrossRefGoogle Scholar
  56. 56.
    Stamenkovic VR, Fowler B, Mun BS, Wang GF, Ross PN, Lucas CA, Markovic NM (2007) Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315:493–497. doi: 10.1126/science.1135941 ADSCrossRefGoogle Scholar
  57. 57.
    Vogel H (1997) Gerthsen Physik, 19th edn. Springer, BerlinGoogle Scholar
  58. 58.
    Hicks LD, Dresselhaus MS (1993) Thermoelectric figure of merit of a one-dimensional conductor. Phys Rev B 47(24):16631–16634ADSCrossRefGoogle Scholar
  59. 59.
    Lin YM, Sun XZ, Dresselhaus MS (2000) Theoretical investigation of thermoelectric transport properties of cylindrical Bi nanowires. Phys Rev B 62(7):4610–4623ADSCrossRefGoogle Scholar
  60. 60.
    Zhang GQ, Wang W, Li XG (2008) Enhanced thermoelectric properties of core/shell heterostructure nanowire composites. Adv Mater 20(19):3654–3656CrossRefGoogle Scholar
  61. 61.
    Purkayastha A, Lupo F, Kim S, Borca-Tasciuc T, Ramanath G (2006) Low-temperature, template-free synthesis of single-crystal bismuth telluride nanorods. Adv Mater 18(4):496–500CrossRefGoogle Scholar
  62. 62.
    Liufu SC, Chen LD, Yao Q, Wang CF (2007) Assembly of one-dimensional nanorods into Bi2S3 films with enhanced thermoelectric transport properties. Appl Phys Lett 90(11):art. n. 112106Google Scholar
  63. 63.
    Purkayastha A, Yan QY, Gandhi DD, Li HF, Pattanaik G, Borca-Tasciuc T, Ravishankar N, Ramanath G (2008) Sequential organic-inorganic templating and thermoelectric properties of high-aspect-ratio single-crystal lead telluride nanorods. Chem Mater 20(15):4791–4793CrossRefGoogle Scholar
  64. 64.
    Zuev YM, Lee JS, Galloy C, Park H, Kim P (2010) Diameter Dependence of the Transport Properties of Antimony Telluride Nanowires. Nano Lett 10(8):3037–3040Google Scholar
  65. 65.
    Ashroft NW, Mermin ND (1976) Solid state physics. Brooks Cole, Orlando, FL (ISBN 0-03-049346-3)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.NanostructuresIstituto Italiano di TecnologiaGenovaItaly
  2. 2.NanochemistryIstituto Italiano di TecnologiaGenovaItaly
  3. 3.National Nanotechnology Laboratory (NNL)Nanoscience Institute of CNRLecceItaly
  4. 4.Departament de Química Inorgànica—Institut de Nanociència i Nanotecnologia (IN2UB)Universitat de BarcelonaBarcelonaSpain
  5. 5.Department of ChemistryUniversity of DelhiDelhiIndia

Personalised recommendations