Advertisement

Quantum Effects in Confined Systems

Chapter
  • 1.4k Downloads
Part of the NanoScience and Technology book series (NANO)

Abstract

In this chapter we give a short introduction to the basic concept of a particle in a box for the discussion of quantum effects in one dimension. This concept will then be expanded to three dimensions in cylindrical coordinates, which are the most adequate to describe rod-shaped nanostructures.

Keywords

Quasi-continuous Distribution Dual Wave-particle Nature Atomic-like Structure Quantum Wires Nanorods 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Yoffe AD (2001) Adv Phys 50(1):1–208ADSCrossRefGoogle Scholar
  2. 2.
    Yuan YR, Pudensi MAA, Vawter GA, Merz JL (1985) J Appl Phys 58:397–403ADSCrossRefGoogle Scholar
  3. 3.
    Bergman JP, Zhao QX, Holtz PO, Monemar B, Sundaram M, Merz JL, Gossard AC (1991) Time-resolved measurements of the radiative recombination in Gaas/Alxga1-Xas heterostructures. Phys Rev B 43(6):4771–4776ADSCrossRefGoogle Scholar
  4. 4.
    Knap W, Borovitskaya E, Shur MS, Hsu L, Walukiewicz W, Frayssinet E, Lorenzini P, Grandjean N, Skierbiszewski C, Prystawko P, Leszczynski M, Grzegory I (2002) Acoustic phonon scattering of two-dimensional electrons in GaN/AlGaN heterostructures. Appl Phys Lett 80(7):1228–1230ADSCrossRefGoogle Scholar
  5. 5.
    Katz O, Horn A, Bahir G, Salzman J (2003) Electron mobility in an AlGaN/GaN two-dimensional electron gas I–carrier concentration dependent mobility. IEEE Trans Elec Dev 50(10):2002–2008ADSCrossRefGoogle Scholar
  6. 6.
    Mora-Ramos ME, Tutor J, Velasco VR (2006) Interface-phonon-limited two-dimensional mobility in AlGaN/GaN heterostructures. J Appl Phys 100 (12): Article no 123708Google Scholar
  7. 7.
    Hu JT, Odom TW, Lieber CM (1999) Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes. Acc Chem Res 32(5):435–445CrossRefGoogle Scholar
  8. 8.
    Cui Y, Lieber CM (2001) Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 291(5505):851–853ADSCrossRefGoogle Scholar
  9. 9.
    Hakkinen H, Barnett RN, Scherbakov AG, Landman U (2000) Nanowire gold chains: formation mechanisms and conductance. J Phys Chem B 104(39):9063–9066CrossRefGoogle Scholar
  10. 10.
    Cobden DH (2001) Molecular electronics–nanowires begin to shine. Nature 409(6816):32–33ADSCrossRefGoogle Scholar
  11. 11.
    Cui XD, Primak A, Zarate X, Tomfohr J, Sankey OF, Moore AL, Moore TA, Gust D, Harris G, Lindsay SM (2001) Reproducible measurement of single-molecule conductivity. Science 294(5542):571–574ADSCrossRefGoogle Scholar
  12. 12.
    Tans SJ, Devoret MH, Dai HJ, Thess A, Smalley RE, Geerligs LJ, Dekker C (1997) Individual single-wall carbon nanotubes as quantum wires. Nature 386(6624):474–477ADSCrossRefGoogle Scholar
  13. 13.
    Saito S (1997) Carbon nanotubes for next-generation electronics devices. Science 278(5335):77–78CrossRefGoogle Scholar
  14. 14.
    Yao Z, Postma HWC, Balents L, Dekker C (1999) Carbon nanotube intramolecular junctions. Nature 402(6759):273–276ADSCrossRefGoogle Scholar
  15. 15.
    de Heer WA, Chatelain A, Ugarte D (1995) A carbon nanotube field-emission electron source. Science 270(5239):1179–1180ADSCrossRefGoogle Scholar
  16. 16.
    Srivastava S, Santos A, Critchley K, Kim KS, Podsiadlo P, Sun K, Lee J, Xu CL, Lilly GD, Glotzer SC, Kotov NA (2010) Light-controlled self-assembly of semiconductor nanoparticles into twisted ribbons. Science 327(5971):1355–1359ADSCrossRefGoogle Scholar
  17. 17.
    Duan XF, Huang Y, Agarwal R, Lieber CM (2003) Single-nanowire electrically driven lasers. Nature 421(6920):241–245ADSCrossRefGoogle Scholar
  18. 18.
    Oulton RF, Sorger VJ, Zentgraf T, Ma RM, Gladden C, Dai L, Bartal G, Zhang X (2009) Plasmon lasers at deep sub wavelength scale. Nature 461(7264):629–632ADSCrossRefGoogle Scholar
  19. 19.
    Baughman RH, Zakhidov AA, de Heer WA (2002) Carbon nanotubes–the route toward applications. Science 297(5582):787–792ADSCrossRefGoogle Scholar
  20. 20.
    Bawendi MG, Steigerwald ML, Brus LE (1990) The quantum mechanics of larger semiconductor clusters (quantum dots). Ann Rev Phys Chem 41(V41):477–496Google Scholar
  21. 21.
    Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271:933–937ADSCrossRefGoogle Scholar
  22. 22.
    Alivisatos AP (1998) Electrical studies of semiconductor-nanocrystal colloids. MRS Bull 23(2):18–23Google Scholar
  23. 23.
    Nirmal M, Dabbousi BO, Bawendi MG, Macklin JJ, Trautman JK, Harris TD, Brus LE (1996) Fluorescence intermittency in single cadmium selenide nanocrystals. Nature 383(6603):802–804ADSCrossRefGoogle Scholar
  24. 24.
    Konstantatos G, Howard I, Fischer A, Hoogland S, Clifford J, Klem E, Levina L, Sargent EH (2006) Ultrasensitive solution-cast quantum dot photo detectors. Nature 442(7099):180–183ADSCrossRefGoogle Scholar
  25. 25.
    Beaulac R, Schneider L, Archer PI, Bacher G, Gamelin DR (2009) Light-induced spontaneous magnetization in doped colloidal quantum dots. Science 325(5943):973–976ADSCrossRefGoogle Scholar
  26. 26.
    Eisberg R, Resnick R (1985) Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Particles, 2nd edn. Wiley, New YorkGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.NanostructuresIstituto Italiano di TecnologiaGenovaItaly
  2. 2.NanochemistryIstituto Italiano di TecnologiaGenovaItaly
  3. 3.National Nanotechnology Laboratory (NNL)Nanoscience Institute of CNRLecceItaly
  4. 4.Departament de Química Inorgànica—Institut de Nanociència i Nanotecnologia (IN2UB)Universitat de BarcelonaBarcelonaSpain
  5. 5.Department of ChemistryUniversity of DelhiDelhiIndia

Personalised recommendations