Skip to main content

Impact of Aerodynamics on Blade Design

  • Chapter
  • First Online:
Introduction to Wind Turbine Aerodynamics

Part of the book series: Green Energy and Technology ((GREEN))

  • 5685 Accesses

Abstract

Now having introduced all knowledge from fluid mechanics, it is high time to try to give an overview on what is really used in practical wind turbine blade design. Referring to Chap. 10 and esp. Figure 10.1, we see that with the development of huge offshore wind turbines up to 170 m rotor diameter, a period of exponential growth has started again after some years of dormancy.

So wie die Sache steht, ist das Beste, auf das zu hoffen ist, ein Geschlecht erfinderischer Zwerge, das für alles zu mieten ist (As things are, the best that can be hoped for is a generation of inventive dwarfs who can be hired for any purpose) (Brecht [1]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This open-jet wind tunnel has a comparably high turbulence intensity of more than 1 %.

  2. 2.

    This textbook from the late 1980s is surly outdated but may help to bridge the gap between engineering mechanics and black box tools like FLEX5 or BLADED.

  3. 3.

    Much of the underlying principle (low induction) has recently been reintroduced for the design of 10\(+\)-MW ordinary wind turbines [40].

References

  1. Brecht B (2008) Life of Galileo. Penguin Classics, London (Reprint)

    Google Scholar 

  2. NN UpWind (2011) Design limits and solutions for very large wind turbines. EWEA, Brussels, Belgium

    Google Scholar 

  3. Hillmer B et al (2007) Aerodynamic and structural design of MultiMW wind turbine blades beyond 5 MW. J Phys Conf Ser 75:01202

    Article  Google Scholar 

  4. Sieros G et al (2012) Upscaling wind turbines: theoretical and practical aspects and their impact on the cost of energy. Wind Energy 15(1):3–17

    Article  Google Scholar 

  5. Griffith DT, Ashwill D (2011) The Sandia 100-meter All-glass baseline wind turbine blade: SNL 100–00, SAND2011-3779. Sandia National Laboratories, Albuquerque, NM, USA

    Google Scholar 

  6. Jamieson P (2011) Innovation in wind energy. Wiley, Chichester

    Google Scholar 

  7. NN IEC publication 61400–1 (2007) 3rd edn. International Electro-technical Commission, Geneva, Switzerland

    Google Scholar 

  8. Abbot IH, von Doenhoff AE (1958) Theory of wing sections. Dover Publication, Inc., New York, USA

    Google Scholar 

  9. Miley SJ (1982) A catalog of low Reynolds number airfoil data for wind turbine applications. RFP-3387 UC-60, Golden, CO, USA

    Google Scholar 

  10. Althaus D (1996) Niedriggeschwindigkeitsprofile: Profilentwicklungen und Polarenmessungen im Laminarwindkanal des Institutes für Aerodynamik und Gasdynamik der Universität Stuttgart. Vieweg, Braunschweig (in German)

    Google Scholar 

  11. Lissaman PBS (2009) Wind turbine airfoils and rotor wake. In Spera DA (ed) Wind turbine technology, 2nd edn. ASME Press, New York

    Google Scholar 

  12. Eppler R (1990) Airfoil design and data. Springer, Berlin, Heidelberg

    Book  Google Scholar 

  13. Tangler J, Smith B, Jager D (1992) SERI advanced wind turbine blades. NREL/TP-257-4492, Golden, CO, USA

    Google Scholar 

  14. Tangler J, Somers DM (1995) NREL airfoil families for HAW turbine dedicated airfoils. Proc, AWEA

    Book  Google Scholar 

  15. Thiele HM (1983) GROWIAN-Rotorblätter: Fertigungsentwicklung, Bau und Test (GROWIAN’s rotorblades: development, construction and testing), BMFT-FB-T 83–11. Bonn, Germany (in German)

    Google Scholar 

  16. Drela M (1990) XFOIL: an analysis and design system for low Reynolds number airfoils. Springer lecture notes in engineerings, vol 54. Springer, Berlin, Heidelberg, pp 1–12

    Google Scholar 

  17. Björk A (1990) Coordinates and calculations for the FFA-W1-xxx, FFA-W2-xxx and FFA-W3-xxx series of airfoils for horizontal axis wind turbines, FFA TN 1990–15. Stockholm, Sweden

    Google Scholar 

  18. Björk A (1996) A guide to data Files from wind tunnel test of a FFA-W3-211 airfoil at FFA, FFAP-V-019. Stockholm, Sweden

    Google Scholar 

  19. Fuglsang P et al (1998) Wind tunnel tests of the FFA-W3-241, FFA-W3-301 and NACA 63–430 airfoils, Risø-R-1041(EN). Roskilde, Denmark

    Google Scholar 

  20. Timmer WA, van Rooij R (2003) Summary of the Delft University wind turbine dedicated airfoils. J Sol Energy Eng 125(4):488–496

    Article  Google Scholar 

  21. Timmer WA (2007) Wind turbine airfoil design and testing. In: Brouckert J-F (ed) Wind turbine aerodynamics: a state-of-the-art. Lecture series 2007–05. von Karman Institute for Fluid Dynamics, Rhode Saint Genese, Belgium

    Google Scholar 

  22. Fuglsang P, Bak C (2004) Development of the Risø wind turbine airfoils. Wind Energy 7(2):145–162

    Google Scholar 

  23. Fuglsang P (2004) Aero-elastic blade design—Slender blades with high lift airfoils compared to traditional blades. Wind turbine blade workshop, Albuquerque, NM, USA

    Google Scholar 

  24. Corten G (2007) Vortex blades—proposal to decrease turbine loads by 5  %, WindPower. Los Angeles, CA, USA

    Google Scholar 

  25. Grasso F (2012) Design of thick airfoils for wind turbines. Wind turbine blade workshop, Albuquerque, NM, USA

    Google Scholar 

  26. Baker JP, van Dam CP, Gilbert BL (2008) Flat-back airfoil wind tunnel experiment, SAND2008–2008. Sandia National Laboratories, Albuquerque, NM, USA

    Google Scholar 

  27. Velte CM (2009) Characterization of vortex generator induced flow. PhD thesis, Technical University of Denmark, Lyngby, Denmark

    Google Scholar 

  28. Katz J (2006) Aerodynamics of race cars. Annu Rev Fluid Mech 38:27–63

    Article  Google Scholar 

  29. Stahl B, Zhai J (2003) Experimentelle Untersuchung an einem 2D-Windkraftprofil im DNW-Kryo Kanal, DNW-GUK-2003 C 02. Köln, Germany (in German)

    Google Scholar 

  30. Stahl B, Zhai J (2004) Experimentelle Untersuchung an einem 2D-Windkraftprofil bei hohen Reynoldszahlen im DNW-Kryo Kanal, DNW-GUK-2004 C 01. Köln, Germany (in German)

    Google Scholar 

  31. Det Norske Veritas(DNV)/Riso/o (2002) Guidelines for design of wind turbines, 2nd edn. Roskilde, Denmark

    Google Scholar 

  32. Germanischer Lloyd Windenergie GmbH (2010) Guidelines for the certification of wind turbines. Hamburg

    Google Scholar 

  33. Vollan A, Komzsik L (2012) Computational techniques of rotor dynamics with the finite element method. CRC Press, Boca Ratton

    Google Scholar 

  34. Eggleston DM, Stoddard FS (1987) Wind turbine engineering design. van Nordstand, New York

    Google Scholar 

  35. Wood D (2011) Small wind turbines. Springer, London

    Book  Google Scholar 

  36. Ludwig N (2013) Automated processes and cost reductions in rotor blade manufacturing. In: VDI-conference, rotor blades of wind turbines, Hamburg, Germany, 17–18 Apr 2013

    Google Scholar 

  37. Jaquemotte P (2012) Fertigung von Rotorblättern, Einsatz von Carbonfasern (Manufacturing of rotor blades—use of carbon fibers), private communication (in German)

    Google Scholar 

  38. NN (2004) New rotor-blades–innovative feature, private communication

    Google Scholar 

  39. Eichler K (2013) SSP technology—blade design. In: VDI-conference, rotor blades of wind turbines, Hamburg, Germany, 17–18 Apr 2013

    Google Scholar 

  40. Chaviaropoulos P, Siros G (2014) Design of low induction rotors for use in large offshore wind farms. In: Proceedings of EWEA 2014 annual event, Barcelona, Spain

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Schaffarczyk .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schaffarczyk, A.P. (2014). Impact of Aerodynamics on Blade Design . In: Introduction to Wind Turbine Aerodynamics. Green Energy and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36409-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36409-9_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36408-2

  • Online ISBN: 978-3-642-36409-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics