Skip to main content

Experiments

  • Chapter
  • First Online:
  • 5602 Accesses

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

This chapter describes methods and results which have been applied to gain insight into the physics of wind turbine flow by performing experiments.

Everybody believes in measurements—except the experimentalist. Nobody believes in theory—except the theorist (Unknown source).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    This code is comparable to the so-called Eppler code [25], developed somewhat earlier and was extended to include 3D effect from stall-delay for rotation in [26].

  2. 2.

    Roughly speaking, this is the ratio where a small disturbance has grown to a relevant size.

  3. 3.

    In [52, 53] even a much lager range of \(\nu < 500\) Hz is excluded.

References

  1. Timmer WA (2007) Wind turbine airfoil design and testing. In: Brouckert J-F (ed) Wind turbine aerodynamics: a state-of-the-art, Lecture series 2007–05. von Karman Institute for Fluid Dynamics, Rhode Saint Genese, Belgium

    Google Scholar 

  2. Timmer WA, Schaffarczyk AP (2004) The effect of roughness at high Reynolds numbers on the performance of airfoil DU9 97-W-300Mod. Wind Energy 7(4):295–307

    Article  Google Scholar 

  3. Freudenreich K, Kaiser K, Schaffarczyk AP, Winkler H, Stahl B (2004) Reynolds number and roughness effects on thick airfoils for wind turbines. Wind Eng 28(5):529–546

    Article  Google Scholar 

  4. Menter F (1992) Improved two-equation k-\(\omega \) turbulence models for aerodynamical flows, NASA Technical Memorandum 103975. Moffett Field, CA, USA

    Google Scholar 

  5. Stahl B, Zhai J (2003) Experimentelle Untersuchung an einem 2D-Windkraftprofil im DNW-Kryo Kanal, DNW-GUK-2003 C 02. Köln, Germany (in German)

    Google Scholar 

  6. Stahl B, Zhai J (2004) Experimentelle Untersuchung an einem 2D-Windkraftprofil bei hohen Reynoldszahlen im DNW-Kryo Kanal, DNW-GUK-2004 C 01. Köln, Germany (in German)

    Google Scholar 

  7. Schaffarczyk AP (2008) Numerische Polare eines 46 % dicken aerodynamischen Profils, Bericht des Labors für Numerische Mechanik, 58, Kiel Germany, 2008 (in German, confidential)

    Google Scholar 

  8. Wolf M, Jeromin A, Schaffarczyk AP (2010) Numerical prediction of airfoil aerodynamics for thick profiles applied to wind turbine blade roots. In: Proceedings of DEWEK 2010, Bremen, Germany

    Google Scholar 

  9. Ahmad MM (2014) CFD investigations of the flow over FLAT back airfoils using OpenFOAM and different turbulence models. MSc thesis, UAS Kiel and FhG IWES, Kiel and Oldenburg, Germany

    Google Scholar 

  10. Madsen J, Lenz K, Dynampally P, Sudhakar P (2009) Investigation of grid resolution requirements for detached Eddy simulation of flow around thick airfoil sections. In: Proceedings of EWEC, Marseille, France

    Google Scholar 

  11. Lissaman PBS (1983) Low-Reynolds-number airfoils. Ann Rev Fluid Mech 15:223–239

    Google Scholar 

  12. International Electro-technical Commission (2013) IEC 61400–12-2, wind turbines: part 12–2: Power performance of electricity producing wind turbines based on nacelle anemometry. Switzerland, Geneva

    Google Scholar 

  13. Elsamprojker A/S (1992) The Tjaæreborg wind turbine. Final report, CEC, DG XII, contract EN3W.0048.DK, Fredericia, Denmark

    Google Scholar 

  14. van Rooji RPJOM (2007) Open air experiments on rotors. In: Brouckert J-F (ed) Wind turbine aerodynamics: a state-of-the-art. Lecture series 2007–05, von Karman Insitute for Fluid Dynamics, Rhode Saint Genese, Belgium

    Google Scholar 

  15. Schepers JG (2012) Engineering models in wind energy aerodynamics. PhD thesis, TU Delft, Delft, The Netherlands

    Google Scholar 

  16. Himmelskamp H (1950) Profiluntersuchungen an einem umlaufenden Propeller, Mitt. Max-Planck-Inst. f. Strömungsforschung, Nr. 2, Göttingen, Germany (in German)

    Google Scholar 

  17. Schepers JG et al (1997) Final report of IEA ANNEX XIV, Field rotor aerodynamics, ECN-C-97-027, Petten, The Netherlands

    Google Scholar 

  18. Schepers JG et al (2002) Final report of IEA ANNEX XVIII, Enhanced field rotor aerodynamics database, ECN-C-02-016, Petten, The Netherlands

    Google Scholar 

  19. Shen WZ, Hansen MOL, Sœrensen JN (2009) Determination of the angle of attack on rotor blades. Wind Energy 12:91–98

    Article  Google Scholar 

  20. Dexin H, Thor S-E (1993) The execution of wind energy projects 1986–1992, FFA TN 1993–19, Bromma, Sweden

    Google Scholar 

  21. Björck A, Ronsten G, Montgomerie B (1995) Aerodynamic section characteristics of a rotating and non-rotation 2.375 m wind turbine blade, FFA TN 1995–03, Bromma, Sweden

    Google Scholar 

  22. Ronsten G (1992) Static pressure measurements on a rotating and a non-rotating 2.375 m wind turbine blade. Comparison with 2D calculations. J Wind Eng Ind Aerodyn 39:105–118

    Google Scholar 

  23. Abbot IH, von Doenhoff AE (1958) Theory of wing sections. Dover Publication Inc., New York, USA

    Google Scholar 

  24. Drela M (1990) XFOIL: an analysis and design system for low Reynolds number airfoils. Springer lecture notes in engineerings, vol 54, 1989. Springer, Berlin, Germany, pp 1–12

    Google Scholar 

  25. Eppler R (1990) Airfoil design and data. Springer, Berlin, Germany

    Book  Google Scholar 

  26. van Rooij RPJOM (1996) Modifications of the boundary layer calculation in RFOIL for improved airfoil stall prediction, report IW-96087R, TU Delft, Delft, The Netherlands

    Google Scholar 

  27. Butterfield CP, Musial WP, Scott GN, Simms DA (1992) NREL combined experimental final report—Phase II NREL/TP-442-4807, Golden, CO, USA

    Google Scholar 

  28. Simms DA, Hand MM, Fingersh LJ, Jager DW (1999) Unsteady aerodynamics experiment phases II-IV, test configurations and available data campaigns, NREL/TP-500-25950, Golden, CO, USA

    Google Scholar 

  29. Somers D (1997) Design and experimental results for the S809 airfoil, NREL/SR-440-6918, Golden, CO, USA

    Google Scholar 

  30. NN (2000) Basic machine parameters. Paper circulated during NASA Ames blind comparison panel, NREL, Golden, USA

    Google Scholar 

  31. Tangler JL, Kocurek JD (2004) Wind turbine post-stall airfoil performance characteristics guidelines for blade-element momentum methods, NREL/CP-500-36900, Golden, Co, USA

    Google Scholar 

  32. Simms D, Schreck S, Hand M, Fingersh LJ (2001) NREL unsteady aerodynamics experiment in the NASA-Ames wind tunnel: a comparison of predictions to measurements, NREL/TP-500-29494, Golden, CO, USA

    Google Scholar 

  33. Tangler JL (2004) The Nebulous art of using wind-tunnel airfoil data for predicting rotor performance, NREL/CP-500-31243, Golden, Co, USA

    Google Scholar 

  34. Sœrensen NN, Michelsen JA, Schreck S (2002) Navier-Stokes prediction of the NREL phase VI rotor in the NASA Ames 80 ft x 120 ft wind tunnel. Wind Energy 5:151–169

    Article  Google Scholar 

  35. Schreck S (2008) IEA wind annex XX: HAWT aerodynamics and models from wind tunnel measurements, NREL/TP-500-43508, Golden, CO, USA

    Google Scholar 

  36. Schepers JG, Snel H (2007) Model experiment in controlled conditions—final report, ECN-E-07-042, Petten, The Netherlands

    Google Scholar 

  37. Boorsma K, Schepers JG (2011) Description of experimental setup Mexico measurements, ECN-X-11-120. Confidential, ECN, Petten, The Netherlands

    Google Scholar 

  38. Schepers JG et al (2012) Final report of IEA Task 29, Mexnex (Phase 1): analysis of Mexico wind tunnel measurements, ECN-E-01-12-004. ECN, The Netherlands

    Google Scholar 

  39. Shen WZ, Zhu WJ, Sørensen JN (2012) Actuator line/Navier-Stokes computations for the MEXICO rotor: comparison with detailed measurement. Wind Energy 15:151–169

    Article  Google Scholar 

  40. Réthoré P-E et al (2011) Mexico wind tunnel and wind turbine modeled in CFD, AIAA-3373, Orlando, FL, USA

    Google Scholar 

  41. Mahmoodi E, Schaffarczyk AP (2012) Actuator disc modeling of the Mexico rotor experiment. In: Proceedings of Euromech Coll. 528, wind energy and the impact of turbulence on the conversion process, Oldenburg, Germany

    Google Scholar 

  42. Burton T, Sharpe D, Jenkins N, Bossanyi E (2011) Wind energy handbook, 2nd edn. Wiley, Chichester

    Google Scholar 

  43. Boorsma K (2012) Power and loads for wind turbines in yawed conditions, ECN-E-12-047, ECN, Petten, The Netherlands

    Google Scholar 

  44. Schaffarczyk AP (2011) Expertise zum Einsatz eines Lasermesssystems zur Verbesserung des Energieertrages und Reduzierung der Lasten mittels genauerer Windnachführung einer Windenergieanlage (Use of a Laser system for increased energy yield and load reduction by improved yaw control), report No. 83, Kiel, Germany, 2011 (in German, confidential)

    Google Scholar 

  45. Snel H, Schepers JG (1995) Joint investigation of dynamic inflow effects and implementation of an engineering method, ECN-C-94-056, Petten, The Netherlands

    Google Scholar 

  46. Schepers JG, Snel H (1995) Dynamic inflow: Yawed conditions and partial span pitch control, ECN-C-95-056, Petten, The Netherlands

    Google Scholar 

  47. Schepers JG (2004) Annexlyse: validation of yaw models, on basis of detailed aerodynamic measurements on wind turbine blades, ECN-C-04-097, ECN, Petten, The Netherlands

    Google Scholar 

  48. Haans W (2011) Wind turbine aerodynamics in yaw. Ph.D. thesis, TU Delft, Delft, The Netherlands

    Google Scholar 

  49. Schepers JG (1999) An engineering model for yawed conditions, developed on the basis of wind tunnel measurements. AiAA-paper 1999–0039:164–174

    Google Scholar 

  50. Mack LM (1977) Transition and laminar instability, 77–15. JPL Publication, Pasadena, CA, USA

    Google Scholar 

  51. Suder KL, OBrian JE, Roschko E (1988) Experimental study of bypass transition in a boundary layer, NASA, Technical memorandum 100913, Cleveland, Ohio, USA

    Google Scholar 

  52. van Groenwoud GJH, Boermans LMM, van Ingen JL (1983) Onderzoek naar de omslag laminair-turbulent van de grenslaag op de rotorbladen vand de 25 m HAT windturbine, Rapport LR-390, Techische Hogeschool Delft, Delft, The Netherlands

    Google Scholar 

  53. van Ingen JL, Schepers JG (2012) Prediction of boundary layer transition on wind turbine blades using \(e^N\)-method and a comparison with measurements, private communication, G. Schepers, 2012

    Google Scholar 

  54. Dollinger Chr, Balaresque N (2013) Messverfahren zur akustisch-aerodynamischen Optierung von Rotorblättern im Winkanal, priv. comm. (in German)

    Google Scholar 

  55. Madsen H et al (2009) The DAN-AERO MW experiment final report, Risø-R-1726(EN), Roskilde, Denmark

    Google Scholar 

  56. Aagaard Madsen H et al (2010) The DAN-AERO MW experiment, AIAA-2010-645, Orlando, FL, USA

    Google Scholar 

  57. Aagaard Madsen H, Bak C (2012) The DAN-AERO MW experiment, IEAwind Annex 29 (MeNext) annual meeting, Golden, CO, USA

    Google Scholar 

  58. Schwab D, Ingwersen S, Schaffarczyk AP, Breuer M (2012) Pressure and hot film measurements on a wind turbine blade operating in the atmosphere. In: Proceedings of the science of making torque from wind, Oldenburg, Germany

    Google Scholar 

  59. Seitz A (2007) Freiflug-Experimente zum Übergang laminar-turbulent in einer Tragflügelgrenzschicht, DLR-FB-2007-01, Braunschweig, Germany (in German)

    Google Scholar 

  60. Peltzer I et al (2009) In flight experiments for delaying laminar-turbulent transition on a laminar wing glove. Proc IMechE 223:619–626

    Google Scholar 

  61. Reeh AD, Weissmüller M, Tropea C (2013) Free-flight investigations of transition under turbulent conditions on a laminar wing glove, AIAA-2013-0994, Grapevine, TX, USA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Schaffarczyk .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schaffarczyk, A.P. (2014). Experiments. In: Introduction to Wind Turbine Aerodynamics. Green Energy and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36409-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36409-9_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36408-2

  • Online ISBN: 978-3-642-36409-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics