Skip to main content

Application of Computational Fluid Mechanics

  • Chapter
  • First Online:
Introduction to Wind Turbine Aerodynamics

Part of the book series: Green Energy and Technology ((GREEN))

  • 5599 Accesses

Abstract

As we have seen in the previous chapters, due the nonlinear behavior it is very difficult—if not impossible—to get simple analytical solutions of the basic fluid dynamic equations in a systematic way.

You can’t calculate what you haven’t understood (Originally

thought to be from P. W. Anderson).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Quadratic correlations may be replaced by a diffusions term because of the fluctuation-dissipation theorem from linear and equilibrium statistical mechanics (Chap. 3) [15]. It states that the variance of equilibrium fluctuations determines the strength of losses by small disturbances as well.

  2. 2.

    From now on in this book the term CFD is assumed to be a RANS simulation where only the full 3D geometry of the wind turbine (or its blades) is used.

References

  1. Fletcher CAJ (2005) Computational techniques for fluid dynamics, 2 Volumes. Springer, Berlin

    Google Scholar 

  2. Anderson TJD (1995) Computational fluid dynamics. McGraw-Hill, New York

    Google Scholar 

  3. Ferziger JH, Perić M (2002) Computational methods for fluid dynamics, 3rd edn. Springer, Berlin

    Google Scholar 

  4. Tu J, Yeoh GH, Liu C (2008) Computational fluid dynamics. Butterworth-Heinemann, Elsevier, Amsterdam

    Google Scholar 

  5. Von Neumann J (1949) Recent theories of turbulence. In: Ulam S (ed) Collected work, vol VI. Unpublished report to the Naval Office, pp 437–472

    Google Scholar 

  6. Hansen MOL et al (1997) A global Navier-Stokes rotor prediction model. AIAA 97–0970, Reno

    Google Scholar 

  7. Schaffarczyk AP (1997) Numerical and theoretical investigation for wind turbines. IEAwind, Annex XI meeting, ECN, Petten, The Netherlands

    Google Scholar 

  8. Trede R (2003) Entwicklung eines Netzgenerators. Diplomarbeit, FH Westküste, Heide (in German)

    Google Scholar 

  9. Sørensen NN HypGrid2D a 2-D Mesh Generator, Risø-R-1035(EN)

    Google Scholar 

  10. Prandtl L (1925) Bericht über Untersuchungen zur ausgebildeten Turbulenz. Z angew Math und Mech 5

    Google Scholar 

  11. Wilcox DC (1993/1994) Turbulence modeling for CFD. DCW Industries Inc.

    Google Scholar 

  12. Kolmogorov AN (1942) Equations of turbulent motion of an incompressible fluid. Izv Akad Nauk SSSR, Ser Fiz VI(1–2):56–58

    Google Scholar 

  13. Prandtl L (1945) Über ein neues Formelsystem für die ausgebildete Turbulenz, Nachr. d. Akad. d. Wiss. in Göttingen, Math.-nat. Klasse, S. 6–20

    Google Scholar 

  14. Spalding B (1991) Kolmogorov’s two-equation model of turbulence. Proc Roy Soc 434:211–216

    Google Scholar 

  15. Pope SB (2000) Turbulent flows. Cambridge University Press, Cambridge, UK

    Google Scholar 

  16. Mohammandi B, Pirronneau O (1994) Analysis of the K-Epsilon turbulence model. Wiley, Chichester, UK

    Google Scholar 

  17. McComb WD (1992) The physics of fluid turbulence. Clarendon Press, Oxford, UK

    Google Scholar 

  18. Yakhot V, Orszag SA (1986) Renormalization group analysis of turbulence. I. Basic theory. J Sci Comp 1(1):3–51

    Google Scholar 

  19. Smith LM, Reynolds WC (1992) On the Yakhot-Orzag renormalization group method for deriving turbulence statistics and models. Phys Fluids A 4(2):364

    Google Scholar 

  20. Smith LM, Reynolds WC (1998) Renormalization group analysis of turbulence. Ann Rev Fluid Mech 30:275–310

    Article  Google Scholar 

  21. Spalart P (1988) Direct simulation of a turbulent boundary layer up to \(R_{\theta } = 1{,}410\). J Fluid Mech 187:61–98

    Article  MATH  Google Scholar 

  22. Michelassi V, Rodi W, Zhu J (1993) Testing a low reynolds number \(k-\epsilon \) model based on direct simulation data. AIAA J 31(9):1720–1723

    Google Scholar 

  23. Menter F (1992) Improved two-equation \(k-\omega \) turbulence models for aerodynamical flows. NASA Technical Memorandum 103975. Moffett Field, CA, USA

    Google Scholar 

  24. Menter F (1994) Two-equation Eddy-viscosity turbulence models for engineering applications. AIAA J 32(8):1598–1605

    Google Scholar 

  25. Ishihara T, Gotoh T, Kaneda Y (2009) Study of high-reynolds number isotropic turbulence by direct numerical simulation. Annu Rev Fluid Mech 41:165–180

    Article  MathSciNet  Google Scholar 

  26. La Y et al (2008) A public turbulence database cluster and applications to study Lagrangian evolution of velocity increments in turbulence. J Turbomach 9(31):1–20

    Google Scholar 

  27. Sanders B, van der Pijl SP, Koren B (2011) Review of computational fluid dynamics for wind turbine wake aerodynamics. Wind Energy 14:799–819

    Google Scholar 

  28. Wu YT, Port-Agel F (2013) Modeling turbine wakes and power losses within a wind farm using LES: an application to the Horns-Rev offshore wind farm. In: Proceedings of ICOWES 2013, Copenhagen, Denmark

    Google Scholar 

  29. Spalart P (2009) Detached-Eddy simulation. Ann Rev Fluid Mech 41:181–202

    Article  Google Scholar 

  30. Winkler H, Schaffarczyk AP (2003) Numerische Simulation des Reynoldszahlverhaltens von dicken aerodynamischen Profilen für Off-shore Anwendungen. Bericht des Labors für numerische Mechanik, 33, Kiel, 2003 (in German)

    Google Scholar 

  31. Langtry RB (2006) A correlation-based transition model using local variables for unstructured parallelized CFD codes. Dissertation, Universität Stuttgart

    Google Scholar 

  32. Menter F, Langtry R (2006) Transitionsmodellierungen technischer Strömungen (Modeling of transitions in engineering flow). ANSYS Germany, Otterfing, Germany

    Google Scholar 

  33. Sørensen NN (2009) CFD modeling of laminar-turbulent transition for airfoils and rotors using the \(\gamma - \tilde{Re_{\theta }}\).mode, Wind Energy 12(8):715–733

    Google Scholar 

  34. Schlatter P (2005) Large-Eddy simulation of transitional turbulence in wall-bounded shear flow. Ph.D. thesis ETH, No. 16000, Zürich, Switzerland

    Google Scholar 

  35. Schreck S (2008) IEA wind annex XX: HAWT aerodynamics and models from wind tunnel measurements, NREL/TP-500-43508. Golden, CO, USA

    Google Scholar 

  36. Shen WZ, Zhu WJ, Sørensen JN (2012) Actuator line/Navier-Stokes computations for the MEXICO rotor: comparison with detailed measurements. Wind Energy 15(5):811–825

    Google Scholar 

  37. Mahmoodi E, Schaffarczyk AP (2012) Actuator disc modeling of the MEXICO rotor experiment. In: Proceedings of Euromech Coll. 528, Wind Energy and the impact of turbulence on the conversion process, Oldenburg, Germany

    Google Scholar 

  38. Schepers JG et al (2012) Final report of IEA Task 29, Mexnex (phase 1): analysis of Mexico wind tunnel measurements. ECN-E-01-12-004. ECN, The Netherlands

    Google Scholar 

  39. Branlard E (2013) Wind turbine tip-loss correction. Master’s thesis, (public version). Risø DTU, Copenhagen, Denmark

    Google Scholar 

  40. Hansen MOL, Johansen J (2004) Tip studies using CFD and comparison with tip loss models. In: Proceedings of 1st conference on the science of making torque from wind, Delft, The Netherlands

    Google Scholar 

  41. Shen WZ, Mikkelsen R, Sørensen JN, Bak C (2003) Validation of tip corrections for wind turbine computations. In: Proceedings of EWEC, Madrid, Spain

    Google Scholar 

  42. Shen WZ, Mikkelsen R, Sørensen JN, Bak C (2005) Tip loss corrections for wind turbine computations. Wind Energy 8:457–475

    Google Scholar 

  43. Simms DA, Hand MM, Fingersh LJ, Jager DW (1999) Unsteady aerodynamics experiment phases II–IV, test configurations and available data campaigns. NREL/TP-500-25950, Golden, CO, USA

    Google Scholar 

  44. Simms D, Schreck S, Hand M, Fingersh LJ (2001) NREL unsteady aerodynamics experiment in the NASA-Ames wind tunnel: a comparison of predictions to measurements. NREL/TP-500-29494. Golden, CO, USA

    Google Scholar 

  45. Freudenreich K, Kaiser K, Schaffarczyk AP, Winkler H, Stahl B (2004) Reynolds number and roughness effects on thick airfoils for wind turbines. Wind Eng 28(5):529–546

    Google Scholar 

  46. Zell PT (1993) Performance and test section flow characteristics of the national full-scale aerodynamics complex 80-by 120-foot wind tunnel. NASA Technical Memorandum, 103920. Moffett Field, CA, USA

    Google Scholar 

  47. Boorsma K, Schepers JG (2011) Description of experimental setup—MEXICO measurements. ECN-X-11-120. Confidential, ECN, Petten, The Netherlands

    Google Scholar 

  48. Schepers JG, Snel H (2007) Model experiments in controlled conditions, final report. ECN-E-07-042. ECN, The Netherlands

    Google Scholar 

  49. Sørensen NN, Michelsen JA, Schreck S (2002) Navier-Stokes prediction of the NREL phase VI rotor in the NASA Ames 80 ft \(\times \) 120 ft wind tunnel. Wind Energy 5:151–168

    Google Scholar 

  50. Jeromin A, Schaffarcyzk AP (2012) First steps in simulating laminar-turbulent transition on the MEXICO blades, 2nd. IEAwind MexNext II Meeting, NREL, Golden, CO, USA

    Google Scholar 

  51. NN (2009) Transition module (V8.76) user guide (V1.0 beta). Unpublished report, Braunschweig, Germany (in German)

    Google Scholar 

  52. Carrion M (2013) Understanding wind turbine wake breakdown using CFD, 3rd. IEAwind MexNext II Meeting, Pamplona, Spain

    Google Scholar 

  53. Schubert M, Schumacher K (1996) Entwurf einer neuen Aktiv-Stall Rotorblattfamilie (Design of a new family of active stall blades). In: Proceedings of DEWEK ’96, Wilhelmshaven, Germany (in German)

    Google Scholar 

  54. Schmidt Paulsen U (1995) Konceptundersøgelse Nordtanks 500/41 Strukturelle laster. Risø-I-936(DA), Roskilde, Denmark

    Google Scholar 

  55. Sørensen NN, Hansen MOL (1998) Rotor performance prediction using a Navier-Stokes method. AIAA-98-0025, Reno

    Google Scholar 

  56. Hansen MOL (2008) Aerodynamics of wind turbines, 2nd edn. Earthscan, London

    Google Scholar 

  57. Laursen J, Enevoldsen P, Hjort S (2007) 3D CFD Quantification of the Performance of a Multi-Megawatt wind turbine. In: Proceedings of 2nd conference of the science of making Torque from wind Copenhagen, Denmark

    Google Scholar 

  58. Dose B (2013) CFD Simulations of a 2.5 MW wind turbine using ANSYS CFX and OpenFOAM. MSc Thesis, UAS Kiel and FhG IWES, Germany

    Google Scholar 

  59. Sørensen JN (2011) Aerodynamic aspects of wind energy conversion. Annual Rev Fl Mech 43:427–448

    Google Scholar 

  60. White FM (2005) Viscous fluid flow, 3rd edn. Mc Graw Hill, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Schaffarczyk .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schaffarczyk, A.P. (2014). Application of Computational Fluid Mechanics. In: Introduction to Wind Turbine Aerodynamics. Green Energy and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36409-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36409-9_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36408-2

  • Online ISBN: 978-3-642-36409-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics