Skip to main content

Basic Fluid Mechanics

  • Chapter
  • First Online:
Introduction to Wind Turbine Aerodynamics

Part of the book series: Green Energy and Technology ((GREEN))

  • 5748 Accesses

Abstract

Air regarded as an ideal gas may be described by its mass density \(\rho = dm/dV\).

Ich behaupte aber, daß in jeder besonderen Naturlehre nur so viel eigentliche Wissenschaft angetroffen werden könne, als darin Mathematik anzutreffen ist (Immanuel Kant, 1786) [1]. (However, I claim that in every special doctrine of nature, there can be only as much proper science as there is mathematics therein. (Ref Stanford Encyclopedia of Philosophy))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A tensor may be represented by a n \(\times \) n matrix. However, like scalars and vectors, it is defined by its transformation rules under change of coordinates.

  2. 2.

    Heinrich Blasius, \(\star \) 09.08.1883, \(\dagger \) 24.04.1970, was one of L. Prandtl’s Prandtl, Ludwig (1875–1953)first PhD students. His work on forces and boundary layer flat plate theory is discussed in almost every textbook of fluid mechanics even today. Less known is that he taught over 50 years (1912–1970) at Ingenieurschule (Polytechnic—now University of Applied Sciences) Hamburg.

  3. 3.

    It may interest to note that here, the essential argument is to avoid singularities in terms of infinite velocities, whereas in other applications, this does not apply, for example, the infinite pressure at an inclined flat plate.

  4. 4.

    Here, we use Einstein’s summation convention, to sum over all dual-indexed variables: \(u_i \cdot u_i := \sum _{i=1}^N u_i \cdot u_i\).

  5. 5.

    Sometimes called chaos theory.

  6. 6.

    By random, we mean that there exist only probabilities for the field quantities, at least in the sense of classical statistical physics.

  7. 7.

    Many well-known physicists worked on turbulence: W. Heisenberg, L. Onsager, Carl-Friedrich von Weizsäcker, to name a few of them. An often repeated quote is that of Richard Feynman that turbulence is the most important unresolved problem in classical physics.

  8. 8.

    Especially on 2D turbulence for which he was awarded the Dirac Medal in 2003.

  9. 9.

    It is well known from the theory of linear partial differential equations that a number of problems are simplified if formulated by Fourier transform into wave number–frequency co-space. The NSE equation then reads as

    $$\begin{aligned}&k_{\beta } \cdot u_{\beta }(\mathbf{k},t) \end{aligned}$$
    (3.115)
    $$\begin{aligned}&\left( \frac{\partial }{\partial t} + \nu \cdot k^2 \right) u_{\alpha } (\mathbf{k},t) = M_{\alpha \beta \gamma } (\mathbf{k},t) \sum _{\mathbf{j}} u_{\beta } (\mathbf{j},t) \cdot u_{\gamma } (\mathbf{k} - \mathbf{j},t) \; \mathrm{and} \end{aligned}$$
    (3.116)
    $$\begin{aligned}&M_{\alpha \beta \gamma } (\mathbf{k},t) = (2 i)^{-1} \left( k_{\beta } D_{\alpha \gamma } (\mathbf{k}) + k_{\gamma } D_{\alpha \beta } (\mathbf{k}) \right) \end{aligned}$$
    (3.117)
  10. 10.

    Taylor’s frozen turbulence hypothesis has been used here. It states that time series may be used instead of spatially varying values.

References

  1. Kant I (1786) Metaphysische Anfrangsgründe der Naturwissenschaft, Königsberg, Königreich Preussen

    Google Scholar 

  2. Chorin A (1993) A mathematical introduction to fluid mechanics. Springer, New York

    Book  MATH  Google Scholar 

  3. Darrigol O (2005) Worlds of flow. Oxford University Press, Oxford

    MATH  Google Scholar 

  4. Bachelor GK (1967) An introduction to fluid dynamics. Cambridge University Press, Cambridge

    Google Scholar 

  5. Milne-Thomson LM (1996) Theoretical hydrodynamics, 5th edn. Dover Publications, New York

    Google Scholar 

  6. Katz J, Plotkin A (2001) Low-speed aerodynamics, 2nd edn. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  7. Eppler R (1990) Airfoil design and data. Springer, Berlin, Heidelberg

    Book  Google Scholar 

  8. Drela M (1990) XFOIL: an analysis and design system for low Reynolds number airfoils. Springer lecture notes in engineerings, vol 54. Springer, Berlin, Heidelberg, pp 1–12

    Google Scholar 

  9. Saffman PG (1992) Vortex dynamics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  10. Babinsky H (2003) How do wings work? Phys Educ 8(6):497–503

    Article  Google Scholar 

  11. McLean D (2013) Understanding aerodynamics, Boeing. Wiley, Chichester

    Google Scholar 

  12. Munk MM (1992) General theory of thin wing sections. NACA, Report No. 142

    Google Scholar 

  13. Glauert H (1926) The elements of aerofoil and airscrew theory, 2nd edn. Cambridge University Press, Cambridge (Reprint)

    Google Scholar 

  14. Wald QR (2006) The aerodynamics of propellers. Prog Aero Sci 42:85–128

    Article  Google Scholar 

  15. Betz A, Prandtl L (1919) Schraubenpropeller mit geringstem Energieverlust. Nachr d Königl Gesell Wiss zu Göttingen Math phys Kl 198–217 (mit einem Zusatz von)

    Google Scholar 

  16. Leishman JG (2002) Challenges in modeling the unsteady aerodynamics of wind turbines, AIA 2002–0037. Reno, NV

    Google Scholar 

  17. Pereira R, Schepers G, Pavel MD (2013) Validation of the Beddoes-Leishman dynamic stall model for horizontal axis wind turbines using MEXICO data. Wind Energy 16(2):207–219

    Google Scholar 

  18. Jones RT (1990) Wing theory. Princeton University Press, Princeton

    Google Scholar 

  19. Föppl O (1911) Windkräfte an ebenen und gewölbten Platten, Jahrbuch der Motorluftschiff-Studiengesellschaft, Berlin, Germany (in German)

    Google Scholar 

  20. Prandtl L, Betz A (2010) Vier Abhandlungen zur Hydrodynamik und Aerodynamik. Universitätsverlag Göttingen, Germany (in German)

    Google Scholar 

  21. Klein Felix (1910) Über die Bildung von Wirbeln in reibungslosen Flüssigkeiten. Z. f. Mathematik u. Physik 58:259–262

    MATH  Google Scholar 

  22. Schlichting H, Gersten K (2000) Boundary layer theory. Springer, Berlin, Heidelberg

    Book  MATH  Google Scholar 

  23. Blasius H (1908) Grenzschichten in Füßigkeiten mit kleiner Reibung. Z Math Phys 66:1–37 in German

    MathSciNet  Google Scholar 

  24. Boyd JP (1999) The Blasius function in the complex plane. Exp Math 8:1–14

    Google Scholar 

  25. van Rooij RPJOM (1996) Modification of the boundary layer calculation in RFOIL for improved airfoil stall prediction. Internal report IW-96087R, TU Delft, The Netherlands

    Google Scholar 

  26. Schubauer GB, Skramstad HK (1993/47) Laminar-boundary-layer oscillations and transition on a flat plate, NACA-TR-909

    Google Scholar 

  27. Hernandez GGM (2011) Laminar-turbulent transition on wind turbines, PhD thesis, Technical University of Copenhagen, Denmark

    Google Scholar 

  28. Leonordo da Vinci, Verso: Studies of flowing water, with notes, RL 12660v, Royal Collection Trust, Windsor, UK.

    Google Scholar 

  29. Gallavotti G (2002) Foundations of fluid mechanics. Springer, Berlin, Heidelberg

    Google Scholar 

  30. Foias C, Manley O, Rosa R, Temam R (2001) Navier-stokes equations and turbulence. Cambridge University Press, Cambridge, UK

    Book  MATH  Google Scholar 

  31. Lions P-L (1996) Mathematical topics in fluid mechanics, vol 1. Incompressible Models, Clarendon Press, Oxford

    Google Scholar 

  32. Fefferman C (2000) Existence and smoothness of the Navier-Stokes equations. Clay Mathematics Institute, The Millennium Prize, Problems, Navier-Stokes Equations, Providence, RI, USA

    Google Scholar 

  33. Ruelle D, Takens F (1971) On the nature of turbulence. Comm Math Phys 20:167–192

    Article  MATH  MathSciNet  Google Scholar 

  34. McComb WD (1992) The physics of fluid turbulence. Clarendon Press, Oxford

    Google Scholar 

  35. Kraichnan R (1994) Anomalous scaling of a randomly advected passive scalar. Phys Rev Lett 72:1016–1019

    Google Scholar 

  36. Chen S et al (2008) Obituary of R. Kraichnan. Phys Today 71:70–71

    Google Scholar 

  37. Bachelor GK (1993) The theory of homogeneous turbulence. Cambridge University Press, Cambridge (Reprinted)

    Google Scholar 

  38. Kurien S, Sreenivasan KR (2001) Measures of anisotropy and the universal properties of turbulence, in: M. Lesieur et al. (Eds) Les Houches Summer School in Theoretical Physics, session LXXIV. Springer, Berlin

    Google Scholar 

  39. Pope SB (2000) Turbulent flows. Cambridge University Press, Cambridge

    Google Scholar 

  40. Frisch U (1995) Turbulence. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  41. Ishihara T, Gotoh T, Kaneda Y (2009) Study of high-reynolds number isotropic turbulence by direct numerical simulation. Annu Rev Fluid Mech 41:165–180

    Article  MathSciNet  Google Scholar 

  42. Jeromin A, Schaffarczyk AP (2012) Advanced statistical analysis of high-frequency turbulent pressure fluctuations for on- and off-shore wind. Proc Euromech Coll 528. Oldenburg, Germany

    Google Scholar 

  43. van Kampen NG (2007) Stochastic processes in physics and chemistry, 3rd edn. Elsevier, Amsterdam

    Google Scholar 

  44. Monin AS, Yaglom AM (2007) Statistical fluid mechanics, 2nd edn. Dover Publications, New York

    Google Scholar 

  45. Friedrich R, Peinke J (1997) Description of a turbulent cascade by a Fokker-Planck equation. Phys Rev Lett 78:863

    Article  Google Scholar 

  46. Schaffarczyk AP et al (2010) A new non-gaussian turbulent wind field generator to estimate design-loads of wind-turbines. in: Peinke J, Oberlack M, Talamelli A (eds) EDS Progress in turbulence III, Springer Proceedings in Physics 131, Springer, Dordrecht

    Google Scholar 

  47. Böettcher F, Barth St, Peinke J (2006) Small and large scale fluctuations in atmospheric wind speeds, Stoch Environ Res Risk Asses

    Google Scholar 

  48. Zdunkowski W, Bott A (2003) Dynamics of the atmosphere. Cambridge University Press, Cambridge

    Book  Google Scholar 

  49. Kunkel KE, Eloranta EW, Weinman JA (1980) Remote determination of winds, turbulence spectra and energy dissipation rates in the boundary layer from lidar measurements. J Atmos Sci 37(6):978–985

    Article  Google Scholar 

  50. Panton RL (1996) Incompressible flow, 2nd edn. Wiley, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Schaffarczyk .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schaffarczyk, A.P. (2014). Basic Fluid Mechanics. In: Introduction to Wind Turbine Aerodynamics. Green Energy and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36409-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36409-9_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36408-2

  • Online ISBN: 978-3-642-36409-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics