Skip to main content

Mashups Using Mathematical Knowledge

Why Formulas Are Different

  • Chapter
Semantic Mashups

Abstract

Mashups offer new functionality by combining, aggregating and transforming resources and services available on the Web. This chapter deals with mathematical mashups and focuses on those that process mathematical knowledge rather than, e.g., huge amounts of numeric data, as it is the structure of knowledge that distinguishes mathematics from other application domains.

The resources that mathematical mashups process primarily include formulas and the services they offer involve computation. In knowledge-rich mashups, the formulas are not hard-coded into the implementation but represented as explicit data structures, and often also presented to the user. These structures are different from the (re)presentations mashups usually process. To allow for automated processing, formulas need to be represented neither as plain text nor as images, but in a symbolic way. The representation of choice is, for compatibility and scalability reasons discussed in this chapter, usually not JSON or RDF, but semantic XML markup. Besides tables or graphs, mathematical mashups may also require formulas to be presented to the end user. The highest degree of interaction with formulas is offered by MathML—in those browsers that fully support it.

After introducing typical education and engineering use cases that benefit from mathematical mashups, this chapter reviews the conceptual and technical foundations for representing and presenting mathematical formulas, discussing MathML as well as alternatives. We continue with a review of mathematical web services and collections of mathematical knowledge that provide suitable building blocks for mathematical mashups. We then present the Planetary system, a math-enabled social semantic web portal that provides an environment for executable papers, and the SAlly framework that mashes up user interfaces of software applications with mathematical web services. Both environments mash up assistive services by hooking them into document structures, which have been annotated with terms from a mathematical background ontology. We conclude with an outlook towards contributing collections of mathematical knowledge to the Web of Data, and outline how such linked open datasets can drive further mathematical mashups in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This notion of the term “knowledge management” is wider than that of its traditional definition as “a range of practices used […] to identify, create, represent, distribute and enable adoption of insights and experiences. Such insights and experiences comprise knowledge, either embodied in individuals or embedded in organizational processes or practice” [66].

  2. 2.

    Numbering added by the authors.

  3. 3.

    To reduce eye strain, we only capitalize this term, as well as the terms “Web 2.0” and “Semantic Web”, when they denote the Web as a whole, but not when they are in an adjective position, as in “semantic web services”.

  4. 4.

    Other than the above-mentioned wiki front-end to the Mizar Mathematical Library and a similar one for the library of the Coq theorem prover, none of which are the primary entry points to these libraries yet, we are not aware of mathematical web 2.0 sites that integrate formal verification.

  5. 5.

    Similarly, Baez suggests that the release of a formula editor plugin for the popular WordPress blog engine was a major incentive for mathematicians to start blogging [13].

  6. 6.

    But see Donald Byrd’s documentation of “extremes of conventional music notation” [19].

  7. 7.

    The information on browser support has been taken from Wikipedia [91], “When can I use…” [134], and a review by Timothy Vismor [131].

  8. 8.

    If we do not have the information that this is a single formula, then additional readings appear.

  9. 9.

    Even in Presentation MathML, it is, however, best practice to mark up the distinction between multiplication and function application explicit using the special Unicode characters Function Application (U+2061) and Invisible Times (U+2062). Both characters occupy no space on the screen and are thus invisible.

  10. 10.

    “An approach to analysing the usability of information artifacts” [16], which has also been applied to mashups [40, 80].

  11. 11.

    The original abbreviation means “JavaScript API for OMDoc-Based Interactive Documents”, but JOBAD-enabled documents do not have to be generated from an OMDoc source.

References

  1. ActiveMath. http://www.activemath.org

  2. Alama J, Brink K, Mamane L, Urban J (2011) Large formal wikis: issues and solutions. In: [34], pp 133–148

    Google Scholar 

  3. American Mathematical Society. http://www.ams.org/mathscinet/help/mr_lookup_help.html

  4. American Mathematical Society. MathSciNet mathematical reviews on the net. http://www.ams.org/mathscinet/

  5. Ankolekar A, Krötzsch M, Tran T, Vrandečić D (2008) The two cultures: mashing up Web 2.0 and the semantic web. J Web Semant 6(1):70–75

    Article  Google Scholar 

  6. Anthony L, Yang J, Koedinger KR (2005) Evaluation of multimodal input for entering mathematical equations on the computer. In: van der Veer G, Gale C (eds) CHI’05 extended abstracts on human factors in computing systems. ACM, New York, pp 1184–1187. doi:10.1145/1056808.1056872

    Google Scholar 

  7. Asperti A, Padovani L, Sacerdoti Coen C, Guidi F, Schena I (2003) Mathematical knowledge management in HELM. Ann Math Artif Intell (special issue on mathematical knowledge management) 38(1–3), 27–46

    Article  MathSciNet  MATH  Google Scholar 

  8. Asperti A, Bancerek G, Trybulec A (eds) (2004) Mathematical knowledge management, MKM’04. Lecture notes in artificial intelligence, vol 3119. Springer, Berlin

    MATH  Google Scholar 

  9. Asperti A, Geuvers H, Natarajan R (2009) Social processes, program verification and all that. Math Struct Comput Sci 19(5):877–896

    Article  MathSciNet  MATH  Google Scholar 

  10. Ausbrooks R, Buswell S, Carlisle D, Chavchanidze G, Dalmas S, Devitt S, Diaz A, Dooley S, Hunter R, Ion P, Kohlhase M, Lazrek A, Libbrecht P, Miller B, Miner R, Sargent M, Smith B, Soiffer N, Sutor R, Watt S (2010) Mathematical markup language (MathML) version 3.0. W3C recommendation, World Wide Web Consortium (W3C). http://www.w3.org/TR/MathML3

  11. Autexier S, Campbell J, Rubio J, Sorge V, Suzuki M, Wiedijk F (eds) (2008) Intelligent computer mathematics. Lecture notes in artificial intelligence, vol 5144. Springer, Berlin

    MATH  Google Scholar 

  12. Autexier S, Calmet J, Delahaye D, Ion PDF, Rideau L, Rioboo R, Sexton AP (eds) (2010) Intelligent computer mathematics. Lecture notes in artificial intelligence, vol 6167. Springer, Berlin

    MATH  Google Scholar 

  13. Baez J (2010) Math blogs. Notices of the AMS, p 333. http://www.ams.org/notices/201003/rtx100300333p.pdf

  14. Barany MJ (2010) ‘[B]ut this is blog maths and we’re free to make up conventions as we go along’: Polymath1 and the modalities of ‘massively collaborative mathematics’. In: Ayers P, Ortega F (eds) Proceedings of the 6th international symposium on wikis and open collaboration (WikiSym). ACM, New York. http://www.wikisym.org/ws2010/Proceedings/

    Google Scholar 

  15. Billingsley WH (2008) The intelligent book: technologies for intelligent and adaptive textbooks, focussing on discrete mathematics. PhD thesis, University of Cambridge. http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-719.pdf

  16. Blackwell A, Green T Cognitive dimensions of notations resource site. http://www.cl.cam.ac.uk/~afb21/CognitiveDimensions/

  17. Borwein J, Stanway T (2005) Knowledge and community in mathematics. Math Intell 27(2):7–16

    Article  MathSciNet  MATH  Google Scholar 

  18. Buswell S, Caprotti O, Carlisle DP, Dewar MC, Gaëtano M, Kohlhase M (2004) The OpenMath standard, version 2.0. Tech rep, The OpenMath Society. http://www.openmath.org/standard/om20

  19. Byrd D (2006) Extremes of conventional music notation. http://www.informatics.indiana.edu/donbyrd/CMNExtremes.htm

  20. Caprotti O, Dewar M, Turi D (2004) Mathematical service matching using description logic and OWL. In: [8], pp 73–87

    Google Scholar 

  21. Carette J, Farmer W (2009) A review of mathematical knowledge management. In: [22], pp 233–246

    Google Scholar 

  22. Carette J, Dixon L, Sacerdoti Coen C, Watt SM (eds) (2009) MKM/Calculemus proceedings. Lecture notes in artificial intelligence, vol 5625. Springer, Berlin

    Google Scholar 

  23. Cartier P (2010) Can we make mathematics universal as well as fully reliable? In: [12], invited talk

    Google Scholar 

  24. Cîrlănaru M, Ginev D, Lange C (2011) Authoring and publishing of units and quantities in semantic documents. In: García Castro R, Fensel D, Antoniou G (eds) The semantic web: ESWC 2011 workshops. Lecture notes in computer science, vol 7117. Springer, Heidelberg, pp 202–216. http://kwarc.info/clange/pubs/eswc2011-units.pdf

    Chapter  Google Scholar 

  25. Codescu M, Horozal F, Kohlhase M, Mossakowski T, Rabe F (2011) Project abstract: logic atlas and integrator (latin). In: [34], pp 289–291

    Google Scholar 

  26. Cohen AM, Cuypers H, Verrijzer R (2010) Mathematical context in interactive documents. Math Comput Sci 3(3):331–347

    Article  MATH  Google Scholar 

  27. Conference on intelligent computer mathematics (CICM). http://cicm-conference.org

  28. Connexions. http://cnx.org

  29. Connexions MathML editor. http://cnx.org/matheditor

  30. Connexions—XML languages. http://cnx.org/help/authoring/xml

  31. Corlosquet S, Delbru R, Clark T, Polleres A, Decker S (2009) Produce and consume linked data with Drupal! In: Bernstein A, Karger DR, Heath T, Feigenbaum L, Maynard D, Motta E, Thirunarayan K (eds) The semantic web—ISWC 2009. Lecture notes in computer science, vol 5823. Springer, Berlin, pp 763–778

    Google Scholar 

  32. Costantini M, Konovalov A, Nicosia M, Solomon A (2011) GAP package OpenMath. http://www.gap-system.org/Packages/openmath.html

  33. Datamasher. http://www.datamasher.org

  34. Davenport J, Farmer W, Rabe F, Urban J (eds) (2011) Intelligent computer mathematics. Lecture notes in artificial intelligence, vol 6824. Springer, Berlin

    MATH  Google Scholar 

  35. David C, Lange C, Rabe F (2010) Interactive documents as interfaces to computer algebra systems: JOBAD and Wolfram—Alpha. In: Delahaye D, Rioboo R (eds) Calculemus (emerging trends). Centre d’Étude et de Recherche en Informatique du CNAM (Cédric), Paris, pp 13–30. https://svn.omdoc.org/repos/jomdoc/doc/pubs/calculemus10/jobad-cas.pdf

    Google Scholar 

  36. David C, Jucovschi C, Kohlhase A, Kohlhase M (2012) Semantic alliance: a framework for semantic allies. In: [61], pp 49–64. http://kwarc.info/kohlhase/submit/mkm12-SAlly.pdf

  37. DBpedia. http://dbpedia.org

  38. Developer apps showcase—data.gov. http://www.data.gov/developers/showcase

  39. Digital library of mathematical functions. http://dlmf.nist.gov

  40. Ennals R, Gay D (2007) User-friendly functional programming for web mashups. In: Proceedings of the 12th ACM SIGPLAN international conference on functional programming, ICFP’07. ACM, New York, pp 223–234. doi:10.1145/1291151.1291187

    Google Scholar 

  41. Farmer WM (2004) MKM: a new interdisciplinary field of research. Bull ACM (special interest group on symbolic and automated mathematics—SIGSAM) 38(2):47–52

    Article  MathSciNet  Google Scholar 

  42. flot—attractive JavaScript plotting for jQuery. http://flot.googlecode.com

  43. Giceva J, Lange C, Rabe F (2009) Integrating web services into active mathematical documents. In: [22], pp 279–293. https://svn.omdoc.org/repos/jomdoc/doc/pubs/mkm09/jobad/jobad-server.pdf

  44. Ginev D. The ml daemon: editable math for the collaborative web. http://latexml.mathweb.org

  45. Ginev D (2011) The structure of mathematical expressions. Master’s thesis, Jacobs University Bremen. http://kwarc.info/people/dginev/publications/DeyanGinev_MScThesis.pdf

  46. Ginev D, Stamerjohanns H, Kohlhase M (2011) The ML daemon: editable math on the collaborative web. In: [34], pp 292–294. https://svn.kwarc.info/repos/arXMLiv/doc/cicm-systems11/paper.pdf

  47. González Palomo A (2006) QMath: a human-oriented language and batch formatter for OMDoc. In: [67], Chap 26.2. http://omdoc.org/pubs/omdoc1.2.pdf

  48. González Palomo A (2006) Sentido: an authoring environment for OMDoc. In: [67], Chap 26.3. http://omdoc.org/pubs/omdoc1.2.pdf

  49. Hammond K, Horn P, Konovalov A, Linton S, Roozemond D, Zain AA, Trinder P (2010) Easy composition of symbolic computation software: a new lingua franca for symbolic computation. In: Proceedings of the 2010 international symposium on symbolic and algebraic computation (ISSAC). ACM, New York, pp 339–346

    Google Scholar 

  50. Heath T, Bizer C (2011) Linked data: evolving the web into a global data space, 1st edn. Synthesis lectures on the semantic web: theory and technology. Morgan & Claypool, San Rafael. http://linkeddatabook.com

    Google Scholar 

  51. Heintz B (2000) Die Innenwelt der Mathematik. Zur Kultur und Praxis einer beweisenden Disziplin. Springer, Vienna

    MATH  Google Scholar 

  52. HELM. http://helm.cs.unibo.it

  53. Hendriks M, Libbrecht P, Creus-Mir A, Dietrich M (2008) Metadata specification. Deliverable D2.4. Intergeo. http://i2geo.net/files/deliverables/D2.4-Metadata-Spec.pdf

  54. Hickson I (2012) HTML5. W3C working draft, World Wide Web Consortium (W3C). http://www.w3.org/TR/2011/WD-html5-20120329/

  55. Horn P. MuPAD OpenMath package. http://mupad.symcomp.org/

  56. Horn P, Roozemond D (2009) OpenMath in SCIEnce: SCSCP and POPCORN. In: [22], pp 474–479

    Google Scholar 

  57. i2geo—i2g metadata. http://i2geo.net/xwiki/bin/view/About/I2GMetadata

  58. i2geo—interoperable interactive geometry for Europe. http://i2geo.net

  59. IEEE Learning Technology Standards Committee (2002) Standard for learning object metadata. Tech Rep 1484.12.1, IEEE

    Google Scholar 

  60. ISSAC—international symposium on symbolic and algebraic computation. http://www.issac-conference.org/

  61. Jeuring J, Campbell JA, Carette J, Dos Reis G, Sojka P, Wenzel M, Sorge V (eds) (2012) Intelligent computer mathematics. Lecture notes in artificial intelligence, vol 7362. Springer, Berlin

    MATH  Google Scholar 

  62. JOBAD framework—JavaScript API for OMDoc-based active documents. http://jobad.omdoc.org

  63. JOMDoc project—Java library for OMDoc documents. http://jomdoc.omdoc.org

  64. JSXGraph—dynamic mathematics with JavaScript. http://jsxgraph.org

  65. Kawata T, Kataoka M, Kai H, Tamura Y (2008) A MathML content markup editor on the XFY. In: Smirnova E, Watt SM (eds) Applications for computer algebra

    Google Scholar 

  66. Knowledge management (2009). http://en.wikipedia.org/w/index.php?title=Knowledge_management&oldid=329227520

  67. Kohlhase M (2006) OMDoc—an open markup format for mathematical documents [version 1.2]. Lecture notes in artificial intelligence, vol 4180. Springer, Berlin. http://omdoc.org/pubs/omdoc1.2.pdf

    Book  Google Scholar 

  68. Kohlhase M (2008) Using as a semantic markup format. Math Comput Sci 2(2):279–304. https://svn.kwarc.info/repos/stex/doc/mcs08/stex.pdf

    Article  MATH  Google Scholar 

  69. Kohlhase A, Kohlhase M (2004) CPoint: dissolving the author’s dilemma. In: [8], pp 175–189. http://kwarc.info/kohlhase/papers/mkm04.pdf

  70. Kohlhase A, Kohlhase M (2007) Reexamining the MKM value proposition: from math web search to math web research. In: Kauers M, Kerber M, Miner R, Windsteiger W (eds) Towards mechanized mathematical assistants. MKM/Calculemus. Lecture notes in artificial intelligence, vol 4573. Springer, Berlin, pp 266–279. http://mathweb.org/projects/mws/pubs/mkm07.pdf

    Google Scholar 

  71. Kohlhase M, Müller C, Rabe F (2008) Notations for living mathematical documents. In: [11], pp 504–519. http://omdoc.org/pubs/mkm08-notations.pdf

  72. Kohlhase M, Rabe F, Zholudev V (2010) Towards MKM in the large: modular representation and scalable software architecture. In: Autexier S, Calmet J, Delahaye D, Ion P, Rideau L, Rioboo R, Sexton A (eds) Intelligent computer mathematics. Lecture notes in computer science, vol 6167. Springer, Berlin, pp 370–384

    Chapter  Google Scholar 

  73. Kohlhase M, Corneli J, David C, Ginev D, Jucovschi C, Kohlhase A, Lange C, Matican B, Mirea S, Zholudev V (2011) The planetary system: Web 3.0 & active documents for stem. Proc Comput Sci 4:598–607. doi:10.1016/j.procs.2011.04.063, https://svn.mathweb.org/repos/planetary/doc/epc11/paper.pdf (finalist at the Executable Paper Grand Challenge)

    Article  Google Scholar 

  74. Kovalchuk A, Levitsky V, Samolyuk I, Yanchuk V (2010) The formulator MathML editor project: user-friendly authoring of content markup documents. In: [12], pp 385–397

    Google Scholar 

  75. Lakatos I (1976) Proofs and refutations. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  76. Lange C (2011) Enabling collaboration on semiformal mathematical knowledge by semantic web integration. Studies on the semantic web, vol 11. AKA Verlag/IOS Press, Heidelberg/Amsterdam

    MATH  Google Scholar 

  77. Lange C (2011) Krextor—an extensible framework for contributing content math to the web of data. In: [34], pp 304–306. http://kwarc.info/clange/pubs/krextor-system.pdf

  78. Lange C (2012) Ontologies and languages for representing mathematical knowledge on the semantic web. Semant Web J 4(2):119–158. doi:10.3233/SW-2012-0059, http://www.semantic-web-journal.net/content/ontologies-and-languages-representing-mathematical-knowledge-semantic-web

    Google Scholar 

  79. Lange C, Ion P, Dimou A, Bratsas C, Sperber W, Kohlhase M, Antoniou I (2012) Bringing mathematics to the web of data: the case of the mathematics subject classification. In: Simperl E, Cimiano P, Polleres A, Corcho O, Presutti V (eds) The semantic web. Lecture notes in computer science, vol 7295. Springer, Berlin, pp 763–777. doi:10.1007/978-3-642-30284-8_58, http://kwarc.info/clange/pubs/eswc2012-msc-skos.pdf

    Google Scholar 

  80. Le-Phuoc D, Polleres A, Hauswirth M, Tummarello G, Morbidoni C (2009) Rapid prototyping of semantic mash-ups through semantic web pipes. In: Quemada J, León G, Maarek YS, Nejdl W (eds) Proceedings of the 17th WWW conference. ACM, New York, pp 581–590

    Google Scholar 

  81. Libbrecht P (2010) What you check is what you get: authoring with jEditOQMath. In: 10th international conference on advanced learning technologies (ICALT). IEEE Press, New York, pp 682–686

    Google Scholar 

  82. Libbrecht P, Kortenkamp U, Mercat C (2009) I2Geo: a web-library of interactive geometry. In: Sojka P (ed) Towards digital mathematics library. Masaryk University Press, Brno, pp 95–106

    Google Scholar 

  83. Manzoor S, Libbrecht P, Ullrich C, Melis E (2006) Authoring presentation for OpenMath. In: Kohlhase M (ed) Mathematical knowledge management, MKM’05. Lecture notes in artificial intelligence, vol 3863. Springer, Berlin, pp 33–48

    Chapter  Google Scholar 

  84. Marchiori M (2003) The mathematical semantic web. In: Asperti A, Buchberger B, Davenport JH (eds) Mathematical knowledge management, MKM’03. Lecture notes in computer science, vol 2594. Springer, Berlin, pp 216–223 (keynote)

    Chapter  Google Scholar 

  85. Marquès D, Eixarch R, Casanellas G, Martínez B (2006) WIRIS OM tools: a semantic formula editor. In: Libbrecht P (ed) Mathematical user interfaces workshop 2006. http://www.activemath.org/~paul/MathUI06

    Google Scholar 

  86. MathDox—interactive mathematics. http://www.mathdox.org

  87. Mathematica. http://www.wolfram.com/products/mathematica/

  88. Mathematics subject classification MSC2010 (2010). http://msc2010.org

  89. Mathematics subject classification (MSC) SKOS (2012). http://msc2010.org/resources/MSC/2010/info/

  90. MathJax: beautiful math in all browsers. http://mathjax.com

  91. MathML (software support/Web browsers) (2012). http://en.wikipedia.org/w/index.php?title=MathML&oldid=482267822#Web_browsers

  92. MathML software—converters. http://www.w3.org/Math/Software/mathml_software_cat_converters.html

  93. MathML software—editors. http://www.w3.org/Math/Software/mathml_software_cat_editors.html

  94. MathOverflow. http://mathoverflow.net

  95. MathPlayer. http://www.dessci.com/en/products/mathplayer

  96. McCabe D, Garrett A. MediaWiki—api. http://www.mediawiki.org/w/index.php?title=API:Main_page&oldid=574291

  97. Melis E, Andrés E, Büdenbender J, Frischauf A, Goguadze G, Libbrecht P, Pollet M, Ullrich C (2001) ActiveMath: a generic and adaptive web-base learning environment. Int J Artif Intell Educ 12(4):385–407

    Google Scholar 

  98. Melis E, Weber M, Andrès E (2003) Lessons for (pedagogic) usability of eLearning systems. In: Rossett A (ed) Proceedings of world conference on e-learning in corporate, government, healthcare, and higher education. AACE, Chesapeake, pp 281–284

    Google Scholar 

  99. Melis E, Goguadze G, Libbrecht P, Ullrich C (2009) Culturally adapted mathematics education with ActiveMath. Artif Intell Soc 24(3):251–265

    Google Scholar 

  100. Miller B. LaTeXML: a to XML converter. http://dlmf.nist.gov/LaTeXML/

  101. Mizar mathematical library. http://www.mizar.org/library

  102. MONET—mathematics on the net. http://monet.nag.co.uk

  103. Müller C (2010) Adaptation of mathematical documents. PhD thesis, Jacobs University Bremen. http://kwarc.info/cmueller/papers/thesis.pdf

  104. Nakano H, Nagai T, Yunpeng J, Wannous M, Kita T (2011) Mashup approach for embedding algebraic manipulations, formulas and graphs in web pages. In: Learning environments and ecosystems in engineering education. IEEE Press, New York, pp 691–694

    Google Scholar 

  105. n-Category Café. http://golem.ph.utexas.edu/category/

  106. nLab. http://ncatlab.org/

  107. OMDoc. http://omdoc.org

  108. OpenMath Society. OM 2 Presentation MathML XSLT test release. http://www.openmath.org/standard/omxsl/

  109. OpenMath software and tools. http://www.openmath.org/software/

  110. Padovani L, Solmi R (2004) An investigation on the dynamics of direct-manipulation editors for mathematics. In: [8], pp 302–316

    Google Scholar 

  111. PlanetMath.org—math for the people, by the people. http://planetmath.org

  112. PlanetMath Redux.org—math for the people, by the people. http://planetmath.mathweb.org

  113. Pólya G (1973) How to solve it. Princeton University Press, Princeton

    Google Scholar 

  114. Polymath blog. http://polymathprojects.org/

  115. Portal: mathematics. http://en.wikipedia.org/w/index.php?title=Portal:Mathematics&oldid=329137789

  116. ProgrammableWeb. http://www.programmableweb.com

  117. ProofWiki. http://www.proofwiki.org

  118. Robinson A, Voronkov A (eds) (2001) Handbook of automated reasoning, vols I–II. Elsevier/MIT Press, Amsterdam/Cambridge

    Google Scholar 

  119. SCIEnce project—symbolic computation infrastructure for Europe. http://www.symcomp.org/

  120. SCIEnce EU project (2009) The Popcorn OpenMath representation. http://java.symcomp.org/FormalPopcorn.html

  121. Semantic markup for . http://trac.kwarc.info/sTeX/ (project homepage)

  122. Semantic MediaWiki. http://semantic-mediawiki.org

  123. Sutcliffe G, Suttner C. The CADE ATP system competition. http://www.cs.miami.edu/~tptp/CASC/

  124. Sutcliffe G, Suttner C (2006) The state of CASC. AI Commun 19(1):35–48

    MathSciNet  MATH  Google Scholar 

  125. Tricki. http://www.tricki.org

  126. Truenumbers. http://www.truenum.com

  127. Trzeciak J (1995) Writing mathematical papers in English. Gdańskie Wydawnictwo Oświatowe, Gdansk

    Google Scholar 

  128. Ullrich C (2008) Pedagogically founded courseware generation for web-based learning. Lecture notes in computer science. Springer, Berlin. http://www.springerlink.com/content/k604618p5351/

    Google Scholar 

  129. Unicode, Inc (2009) Unicode. http://www.unicode.org/versions/Unicode5.2.0/

  130. Urban J, Alama J, Rudnicki P, Geuvers H (2010) A wiki for Mizar: motivation, considerations, and initial prototype. In: [12], pp 455–469

    Google Scholar 

  131. Vismor T (2012) Viewing mathematics on the internet. https://vismor.com/documents/site_implementation/viewing_mathematics/

  132. Vrandečić D, Lange C, Hausenblas M, Bao J, Ding L (2010) Semantics of governmental statistics data. In: Proceedings of WebSci’10: extending the frontiers of society on-line. Web Science Trust. http://journal.webscience.org/400/

  133. W3C math working group: example XSLT code for transforming XML languages for the web. http://web-xslt.googlecode.com

  134. When can I use MathML? (2012). http://caniuse.com/mathml

  135. WIRIS editor—a tool for graphical edition of mathematical formulas. http://www.wiris.com/content/view/20/

  136. Wolfram—Alpha. http://www.wolframalpha.com

  137. Wolfram—Alpha widgets. http://developer.wolframalpha.com/widgets/

  138. Wolfram MathWorld. http://mathworld.wolfram.com

  139. Working with MathML—Wolfram Mathematica 8 documentation (2011). http://reference.wolfram.com/mathematica/XML/tutorial/MathML.html

  140. XULRunner runtime environment. https://developer.mozilla.org/en/XULRunner

  141. Yacas computer algebra system. http://yacas.sourceforge.net/

  142. Zacchiroli S (2007) User interaction widgets for interactive theorem proving. PhD thesis, Università di Bologna

    Google Scholar 

  143. Zalewski M (2010) Browser security handbook. Tech rep, Google. http://browsersec.googlecode.com

  144. Zentralblatt MATH. http://www.zentralblatt-math.org

  145. Zholudev V et al (2010) TNTBase—restful api. http://tntbase.org/wiki/restful

  146. Zholudev V, Kohlhase M, Rabe F (2010) A [insert XML format] database for [insert cool application]. In: Proceedings of XML, Prague, 2010, pp 317–339. http://kwarc.info/vzholudev/pubs/XMLPrague.pdf

    Google Scholar 

  147. Zimmer J (2008) MathServe—a framework for semantic reasoning services. PhD thesis, Universität des Saarlandes

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Paul Libbrecht for his thorough review and constructive feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Lange .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lange, C., Kohlhase, M. (2013). Mashups Using Mathematical Knowledge. In: Endres-Niggemeyer, B. (eds) Semantic Mashups. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36403-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36403-7_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36402-0

  • Online ISBN: 978-3-642-36403-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics