Skip to main content

Electro-Thermo-Elastic Simulation of Graphite Tools Used in SPS Processes

  • Chapter
  • First Online:
Generalized Continua as Models for Materials

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 22))

Abstract

In the range of field-assisted sintering technology or spark plasma sintering all materials in the testing machine undergo very large temperature changes. The powder material, which has to be sintered, is filled into a graphite die and mechanically loaded by a graphite punch. The heat is produced by electrical induction and the cooling process is performed by conduction and radiation. Both the heating and the cooling process are very fast. In order to understand the process of the highly loaded graphite parts, experiments, modeling and computations have to be carried out. On the thermal side the temperature-dependent material properties such as heat capacity and heat conductivity have to be modeled. Since the heat capacity is not independent of the Helmholtz free-energy a particular consideration of the free-energy is carried out. On the other hand, the temperature changes of the electrical resistivity and the material properties of the graphite tool must be taken into considerations. Accordingly, the material properties of “Ohm’s law” must be modeled as well. The fully coupled system comprising the electrical, thermal and mechanical field are solved numerically by a monolithic finite element approach. After the spatial discretization using finite elements one arrives at a system of differential-algebraic equations which is solved by means of diagonally implicit Runge-Kutta methods. Issues and open questions in the numerics are addressed and problems in modeling a real application are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Garay, J.: Current-activated, pressure-assisted densification of materials. Annu. Rev. Mater. Res. 40(1), 445–468 (2010)

    Article  Google Scholar 

  2. Grasso, S., Sakka, Y., Maizza, G.: Electric current activated/assisted sintering ( ECAS ): a review of patents 1906–2008. Sci. Tech. Adv. Mater. 10(5), 053001 (2009)

    Article  Google Scholar 

  3. Munir, Z.A., Anselmi-Tamburini, U., Ohyanagi, M.: The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method. J. Mater. Sci. 41(3), 763–777 (2006)

    Article  Google Scholar 

  4. Munir, Z.A., Quach, D.V.: Electric current activation of sintering: a review of the pulsed electric current sintering process. J. Am. Ceram. Soc. 94, 1–19 (2010)

    Article  Google Scholar 

  5. Cincotti, A., Locci, A.M., Orru, R., Cao, G.: Modeling of SPS apparatus: temperature, current and strain distribution with no powders. AIChE J. 53(3), 703–719 (2007)

    Article  Google Scholar 

  6. Wang, X., Casolco, S.R., Xu, G., Garay, J.E.: Finite element modeling of electric current-activated sintering: the effect of coupled electrical potential, temperature and stress. Acta Mater. 55, 3611–3622 (2007)

    Article  Google Scholar 

  7. Antou, G., Mathieu, G., Trolliard, G., Maitre, A.: Spark plasma sintering of zirconium carbide and oxycarbide: finite lement modeling of current density, temperature, and stress distributions. J. Mater. Res. 24, 404–412 (2009)

    Article  Google Scholar 

  8. Muñoz, S., Anselmi-Tamburini, U.: Parametric investigation of temperature distribution in field activated sintering apparatus. Int. J. Adv. Manuf, Technol (2012)

    Google Scholar 

  9. Wang, C., Cheng, L., Zhao, Z.: FEM analysis of the temperature and stress distribution in spark plasma sintering: modelling and experimental validation. Comput. Mater. Sci. 49(2), 351–362 (2010)

    Article  MathSciNet  Google Scholar 

  10. Maizza, G., Grasso, S., Sakka, Y., Noda, T., Ohashi, O.: Relation between microstructure, properties and spark plasma sintering (SPS) parameters of pure ultrafine WC powder. Sci. Tech. Adv. Mater. 8(7–8), 644–654 (2007)

    Article  Google Scholar 

  11. Olevsky, E.A., Garcia-Cardona, C., Bradbury, W.L., Haines, C.D., Martin, D.G., Kapoor, D.: Fundamental aspects of spark plasma sintering: II. Finite element analysis of scalability. J. Am. Ceram. Soc. 95(8), 2414–2422 (2012)

    Article  Google Scholar 

  12. Song, Y., Li, Y., Zhou, Z., Lai, Y., Ye, Y.: A multi-field coupled FEM model for one-step-forming process of spark plasma sintering considering local densification of powder material. J. Mater. Sci. 46, 5645–5656 (2011)

    Article  Google Scholar 

  13. Boley, B.A., Weiner, J.H.: Theory of Thermal Stresses. Dover Publications, Mineola, USA (1997)

    MATH  Google Scholar 

  14. Nowacki, W.: Thermoelasticity. Addison-Wesley Publishing Co., Reading (1962)

    Google Scholar 

  15. Hartmann, S., Rothe, S.: A rigorous application of the method of vertical lines to coupled systems in finite element analysis. In: Ansorge, R., Bijl, H., Meister, A., Sonar, T. (eds.) Recent Developments in the Numerics of Nonlinear Hyperbolic Conservation, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, pp. 161–175. Springer, Berlin (2012)

    Google Scholar 

  16. Eringen, A.C., Maugin, G.A.: Electrodynamics of Continua I. Springer, New York (1990)

    Book  Google Scholar 

  17. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II, 2nd revised edn. Springer, Berlin (1996)

    Book  Google Scholar 

  18. Strehmel, K., Weiner, R.: Numerik gewöhnlicher Differentialgleichungen. Teubner Verlag, Stuttgart (1995)

    MATH  Google Scholar 

  19. Krautkrämer, J., Krautkrämer, H.: Ultrasonic Testing of Materials. Springer, Verlag (1990)

    Book  Google Scholar 

  20. Workman, G., Kishoni, D., Moore, P.: Ultrasonic testing. Nondestructive testing handbook. American Society for Nondestructive Testing, Nondestructive Testing Handbook (2007)

    Google Scholar 

  21. Haupt, P.: Continuum Mechanics and Theory of Materials, 2nd edn. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  22. Griffiths, D.J.: Elektrodynamik, 3rd edn. Pearson Education, München (2011)

    Google Scholar 

  23. Landau, L.D., Lifshitz, E.M., Pitaevskii, L.P.: Electrodynamics of continuous media, 2nd edn. Elsevier, Amsterdam (2008)

    Google Scholar 

  24. Lewis, R.W., Morgan, K., Thomas, H.R., Seetharamu, K.N.: The Finite Element Method in Heat Transfer Analysis. Wiley, Chichester (1996)

    MATH  Google Scholar 

  25. Quint, K.J., Hartmann, S., Rothe, S., Saba, N., Steinhoff, K.: Experimental validation of high-order time-integration for non-linear heat transfer problems. Comput. Mech. 48, 81–96 (2011)

    Article  MATH  Google Scholar 

  26. Reddy, J.N., Gartling, D.K.: The Finite Element Method in Heat Transfer and Fluid Dynamics. CRC Press, Boca Raton, FL (2000)

    MATH  Google Scholar 

  27. Seifert, W., Ueltzen, M., Müller, E.: One-dimensional modelling of thermoelectric cooling. Phys. Status Solidi 194(1), 277–290 (2002)

    Article  Google Scholar 

  28. Pérez-Aparicio, J.L., Palma, R., Taylor, R.L.: Finite element analysis and material sensitivity of Peltier thermoelectric cells coolers. Int. J. Heat Mass Transf. 55, 1363–1374 (2012)

    Article  MATH  Google Scholar 

  29. Palma, R., Pérez-Aparicio, J.L., Taylor, R.L.: Non-linear finite element formulation applied to thermoelectric materials under hyperbolic heat conduction model. Comput. Methods Appl. Mech. Eng. 213–216, 93–103 (2012)

    Article  Google Scholar 

  30. Anselmi-Tamburini, U., Gennari, S., Garay, J.E., Munir, Z.A.: Fundamental investigations on the spark plasma sintering/synthesis process II. Modeling of current and temperature distributions. Mater. Sci. Eng. A 394, 139–148 (2005)

    Article  Google Scholar 

  31. Hairer, E., Norsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I, 2nd revised edn. Springer, Berlin (1993)

    Google Scholar 

  32. Ellsiepen, P., Hartmann, S.: Remarks on the interpretation of current non-linear finite-element-analyses as differential-algebraic equations. Int. J. Numer. Methods Eng. 51, 679–707 (2001)

    Article  MATH  Google Scholar 

  33. Hartmann, S.: Computation in finite strain viscoelasticity: finite elements based on the interpretation as differential-algebraic equations. Comput. Methods Appl. Mech. Eng. 191(13–14), 1439–1470 (2002)

    Article  MATH  Google Scholar 

  34. Hartmann, S., Bier, W.: High-order time integration applied to metal powder plasticity. Int. J. Plast. 24(1), 17–54 (2008)

    Article  MATH  Google Scholar 

  35. Hartmann, S., Quint, K.J., Arnold, M.: On plastic incompressibility within time-adaptive finite elements combined with projection techniques. Comput. Methods Appl. Mech. Eng. 198, 178–193 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. Birken, P., Quint, K.J., Hartmann, S., Meister, A.: A time-adaptive fluid-structure interaction method for thermal coupling. Comput. Vis. Sci. 13, 331–340 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. Hamkar, A.-W., Hartmann, S.: Theoretical and numerical aspects in weak-compressible finite strain thermo-elasticity. J. Theoret. Appl. Mech. 50, 3–22 (2012)

    Google Scholar 

  38. Hartmann, S., Duintjer Tebbens, J., Quint, K.J., Meister, A.: Iterative solvers within sequences of large linear systems in non-linear structural mechanics. J. Appl. Math. Mech. (ZAMM) 89(9), 711–728 (2009)

    Google Scholar 

  39. Kelley, C.T.: Solving Nonlinear Equations with Newton’s Method. SIAM Society for Industrial and Applied Mathematics, Philadelphia (2003)

    Book  MATH  Google Scholar 

  40. Bier, W., Dariel, M.P., Frage, N., Hartmann, S., Michailov, O.: Die compaction of copper powder designed for material parameter identification. Int. J. Mech. Sci. 49, 766–777 (2007)

    Article  Google Scholar 

  41. Vanmeensel, K., Laptev, A., Hennicke, J., Vleugels, J., der Biest, O.: Modelling of the temperature distribution during field assisted sintering. Acta Mater. 53, 4379–4388 (2005)

    Article  Google Scholar 

  42. Zavaliangos, A., Zhang, J., Krammer, M., Groza, J.R.: Temperature evolution during field activated sintering. Mater. Sci. Eng. 379, 218–228 (2004)

    Article  Google Scholar 

  43. Ellsiepen, P.: Zeit- und ortsadaptive Verfahren angewandt auf Mehrphasenprobleme poröser Medien. Doctoral thesis, Institute of Mechanics II, University of Stuttgart. Report No. II-3 (1999)

    Google Scholar 

  44. Cash, J.R.: Diagonally implicit Runge-Kutta formulae with error estimates. J. Inst. Math. Appl. 24, 293–301 (1979)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

First of all, we would like to thank the German Research Foundation (DFG) for supporting this work under the grant no. HA2024/7-1. Furthermore, the authors would like to thank PD Dr.-Ing. habil. Bernd Weidenfeller for measuring the heat capacity and the thermal conductivity of copper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Hartmann .

Editor information

Editors and Affiliations

Appendix

Appendix

In the numerical studies the copper is used in the die system. For this the temperature-dependent heat capacity and conductivity are measured, see Fig. 8. The heat capacity at constant pressure of copper is measured with a Netzsch DSC 204 F1 Phoenix apparatus, which uses the Differential Scanning Calorimetry, see Fig. 8b. The thermal diffusivity \(\displaystyle a(\Theta )\) of copper is measured with a Netzsch Laserflash LFA 457 and subsequently the thermal conductivity is computed by \(\displaystyle \kappa {}_{\Theta }(\Theta )=a(\Theta )\rho c{}_{\Theta }(\Theta )\), see Fig. 8a. For both quantities a linear temperature dependence is assumed,

$$\begin{aligned} \kappa _{\Theta ,\text{ Cu }}(\Theta )&= -78.3347 \times {10^{-3}}\;{\mathrm{{W}}} /({\mathrm{{mK^2}}}) \Theta + {433.173}{\mathrm{{W}}}/({\mathrm{{mK}}}) \end{aligned}$$
(38)
$$\begin{aligned} c_{\Theta ,\text{ Cu }}(\Theta )&= 82.2141 \times {10^{-3}}\;{\mathrm{{J}}}/({\mathrm{{kgK}}}^2) \Theta + {373.728}{\mathrm{{J}}} /({\mathrm{{kgK}}}^2) \end{aligned}$$
(39)

which fit very well with experimental data. The properties of alumina and the electrical conductivity of copper are taken from the literature, see [30]. The investigated temperature range in this publication is between \(\displaystyle {300}\,{\mathrm{{K}}}\) and \(\displaystyle {1300}\,{\mathrm{{K}}}\).

$$\begin{aligned} \kappa _{\Theta ,\text{ Al }}(\Theta )&= \frac{65181330.4+\Theta }{-669628.8+8175.85\Theta } \quad \text{ in }\quad {\mathrm{{W}}}/({\mathrm{{mK}}}),\end{aligned}$$
(40)
$$\begin{aligned} c_{\Theta ,\text{ Al }}(\Theta )&= \frac{7770.25{\Theta }}{249.4+{\Theta }} + \frac{790.15}{249+{\Theta }} + 0.008\Theta \quad \text{ in }\quad {\mathrm{{J}}}/({\mathrm{{kgK}}}) ,\end{aligned}$$
(41)
$$\begin{aligned} \kappa _{\varphi ,\text{ Al }}&= {10^{-8}}\mathrm{{A}}/(\mathrm{{Vm}})\end{aligned}$$
(42)
$$\begin{aligned} \kappa _{\varphi ,\text{ Cu }}(\Theta )&= (5.5+0.038\Theta )\times 10^{9}\quad {\text{ in }}\quad {\mathrm{{A}}}/({\mathrm{{Vm}}}) \end{aligned}$$
(43)

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hartmann, S., Rothe, S., Frage, N. (2013). Electro-Thermo-Elastic Simulation of Graphite Tools Used in SPS Processes. In: Altenbach, H., Forest, S., Krivtsov, A. (eds) Generalized Continua as Models for Materials. Advanced Structured Materials, vol 22. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36394-8_8

Download citation

Publish with us

Policies and ethics