Skip to main content

Cosserat Anisotropic Models of Trabecular Bone from the Homogenization of the Trabecular Structure: 2D and 3D Frameworks

  • Chapter
  • First Online:
Generalized Continua as Models for Materials

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 22))

Abstract

Cosserat models of trabecular bone are constructed in 2D and 3D situations, based on micromechanical approaches to investigate microstructure-related scale effects on the macroscopic properties of bone. The effective mechanical properties of cancellous bones considered as cellular solids are obtained thanks to the discrete homogenization technique. The cell walls of the bone microstructure are modeled as Timoshenko thick beams. An anisotropic micropolar equivalent continuum model is constructed, the effective mechanical properties of which are identified. Closed form expressions of the equivalent properties are obtained versus the geometrical and mechanical microparameters, accounting for the effects of bending, axial, and transverse shear deformations; torsion is additionally considered for a 3D geometry. The classical and micropolar effective moduli and the internal flexural and torsional lengths are identified versus the micropolar material constants. The stress distribution in a cracked bone sample is computed based on the effective micropolar model, highlighting the regularizing effect of the Cosserat continuum in comparison to a classical elasticity continuum model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bakhvalov, N., Panasenko, G.: Homogenisation: averaging processes in periodic media. Kluwer Academic Pub, Dordrecht (1984)

    Google Scholar 

  2. Bouyge, F., Jasiuk, I., Boccara, S., Ostoja-Starzewski, M.: A micromechanically based couple-stress model of an elastic orthotropic two-phase composite. Eur. J. Mech. A. Solids. 21, 465–481 (2002)

    Article  MATH  Google Scholar 

  3. Bowman, S.M., et al.: Creep contributes to the fatigue behavior of bovine trabecular bone’. J. Biomech. Eng. 120, 647–654 (1998)

    Article  Google Scholar 

  4. Broek, D.: Elementary fracture mechanics. Noordhoff, Leyden (1974).

    Google Scholar 

  5. Chang, C.S., Kuhn, M.R.: Mechanics of Solids and Structures: Hierarchical Modeling and the Finite Element Solution. On virtual work and stress in granular media. Int. J. Solids. Struct. 42(13), 3773–3793 (2005)

    Article  MATH  Google Scholar 

  6. Cosserat, E., Cosserat, F.: Théorie Des Corps Déformables. A. Hermann et Fils, Paris (1909)

    Google Scholar 

  7. Cowin, S.C., Doty, S.B.: Tissue Mechanics. Springer, New York (2007)

    Book  MATH  Google Scholar 

  8. Dos Reis, F.: Homogenization automatique de milieux discrets périodiques. Applications aux mousses polymères et aux milieux auxétique. Ph.D. Thesis, Institut National Polytechnique de Lorraine (2010)

    Google Scholar 

  9. Dos Reis, F., Ganghoffer, J.F.: Equivalent mechanical properties of auxetic lattices from discrete homogenization. Comput. Mater. Sci. 51, 314–321 (2012)

    Article  Google Scholar 

  10. Eringen, A.C.: Linear theory of micropolar elasticity. J. Math. Mech. 15, 909–923 (1966)

    MathSciNet  MATH  Google Scholar 

  11. Eringen, A.C.: Theory of Micropolar Elasticity. In: Liebowitz, H. (ed.) Fracture, vol. II, pp. 621–729. Academic Press, New York (1968)

    Google Scholar 

  12. Eringen, A.C.: Continuum Physics - Non-local Field Theories. Academic Press, New York (1976)

    Google Scholar 

  13. Eringen, A.C.: Microcontinuum field theories: i foundations and solids. Springer Verlag, New York (1999)

    Book  MATH  Google Scholar 

  14. Fang, Z.: Image-guided modeling, fabrication and micromechanical analysis of bone and heterogeneous structure. PhD thesis Drexel University, Philadelphia (2005)

    Google Scholar 

  15. Fatemi, J., van Keulen, F., Onck, P.R.: Generalized continuum theories: application to stress analysis in bone. Meccanica. 37, 385–396 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fatemi, J., Onck, P.R., Poort, G., Van Keulen, F.: Cosserat moduli of anisotropic cancellous bone: a micromechanical analysis. J. Phys. IV France. 105, 273–280 (2003)

    Article  Google Scholar 

  17. Ford, C.M., Keaveny, T.M.: The dependence of shear failure properties of trabecular bone on apparent density and trabecular orientation. J Biomech 29, 1309 (1996)

    Article  Google Scholar 

  18. Ford, C.M., Gibson, L.J.: Uniaxial strength asymmetry in cellular materials: an analytical model Int. J. Mech. Sci. 40(521), 531 (1998)

    Google Scholar 

  19. Gibson, L.J., Ashby, M.F., Schajer, G.S., Robertson, C.I.: The mechanics of two-dimensional cellular materials. Proc. Roy. Soc. Lond. A 382, 25–42 (1982)

    Article  Google Scholar 

  20. Gibson, L.J., Ashby, M.F.: Cellular Solids: Structures and Properties. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  21. Gonella, S., Ruzzene, M.: Homogenization and equivalent in-plane properties of two dimensional periodic lattices. Int. J. Solids. Struct. 45, 2897–2915 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kim, H.S., Al-Hassani, S.T.S.: A morphological model of vertebral trabecular bone. J. Biomech. 35, 1101–1114 (2002)

    Article  Google Scholar 

  23. Koiter, W.T.: Couple stress in the theory of elasticity. Proc. Koninklijke Nederland Akademie van Wettenschappen B 67, 17–44 (1964)

    Google Scholar 

  24. Lakes, R., Nakamura, S., Behiri, J., Bonfield, W.: Fracture mechanics of bone with short cracks. J. Biomech. 23, 967–975 (1990)

    Article  Google Scholar 

  25. Lakes, R.: Materials with structural hierarchy. Nature 361, 511–515 (1993)

    Article  Google Scholar 

  26. Lakes, R.: Experimental methods for study of Cosserat elastic solids and other generalized elastic continua. In: Muhlhaus, H.-B. (ed.) Continuum Models for Materials with Microstructure, pp. 1–22. Wiley, New York (1995)

    Google Scholar 

  27. Liu, S.X., Zhang, H.X., Guo, E.X.: Contributions of trabecular rods of various orientations in determining the elastic properties of human vertebral trabecular bone. Bone 45, 158–163 (2009)

    Article  Google Scholar 

  28. Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Compos. Struct. 35, 403–422 (1996)

    Article  Google Scholar 

  29. Miller, Z., Fuchs, M.B.: Effect of trabecular curvature on the stiffness of trabecular bone. J. Biomech. 38, 1855–1864 (2005)

    Article  Google Scholar 

  30. Mindlin, R.D.: Influence of couple-stresses on stress concentrations. Exp. Mech. 3, 1–7 (1963)

    Article  Google Scholar 

  31. Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Rational Mech. Anal. 16, 51–78 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  32. Mindlin, R.D., Tiersten, H.F.: Effects of couple stresses in linear elasticity. Arch. Rational Mech. Anal. 11, 415–448 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  33. Mourad, A., Caillerie, D.A., Raoult, A.: A nonlinearly elastic homogenized constitutive law for the myocardium, pp. 1779–1781. Computational Fluid and Solid Mechanics, Cambridge (2003)

    Google Scholar 

  34. Muhlhaus, H.B., Oka, F.: Dispersion and wave propagation in discrete and continuous models for granular materials. Int. J. Solids Struct. 33, 2841–2858 (1996)

    Article  Google Scholar 

  35. Panasenko, G.P.: Averaging of processes in frame constructions with random properties. Zh. Vychisl. Mat. Mat. Fiz. 23, 1098–1109 (1983)

    MathSciNet  Google Scholar 

  36. Park, H.C., Lakes, R.S.: Torsion of a micropolar elastic prism of square cross section. Int. J. Solids. Struct. 23, 485–503 (1987)

    Article  MATH  Google Scholar 

  37. Rovati, M., Veber, D.: Optimal topologies for micropolar solids. Struct. Multidisc. Optim. 33, 47–59 (2007)

    Article  Google Scholar 

  38. Sab, K., Pradel, F.: Homogenisation of periodic Cosserat media. Int. J. Comput. Appl. Technol. 34, 60–71 (2009)

    Article  Google Scholar 

  39. Sanchez-Palencia, E.: Non-homogeneous media and vibration theory, Lecture notes in Physics, 127. Springer-Verlag, Berlin (1980)

    Google Scholar 

  40. Shmoylova, E., Potapenko, S., Rothenburg, L.: Stress distribution around a crack in plane micropolar elasticity. J. Elast. 86, 19–39 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  41. Silva, M.J., Hayes, W.C., Gibson, L.J.: The effects of non-periodic microstructure on the elastic properties of two-dimensional cellular solids. Int. J. Mech. Sci. 37, 1161–1177 (1995)

    Article  MATH  Google Scholar 

  42. Suiker, A.S.J., de Borst, R., Chang, C.S.: Micro-mechanical modelling of granular material. Part 1: derivation of a secondgradient micro-polar constitutive theory. Acta. Mech. 149, 161–180 (2001)

    Article  MATH  Google Scholar 

  43. Tanaka, M., Adachi, T.: Lattice continuum model for bone remodeling considering microstructural optimality of trabecular architecture. In: Pedersen, P., Bendsoe, M.P. (eds.) IUTAM Symposium on Synthesis in Bio Solid Mechanics, pp. 43–54. Kluwer Academic Publishers, The Netherlands (1999)

    Google Scholar 

  44. Taylor, M., Cotton, J., Zioupos, P.: Finite element simulation of the fatigue behaviour of cancellous bone. Meccanica. 37, 419–429 (2002)

    Article  MATH  Google Scholar 

  45. Warren, W.E., Byskov, E.: Three-fold symmetry restrictions on two-dimensional micropolar materials. Eur. J. Mech. A. Solids. 21, 779–792 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  46. Warren, W.E., Kraynik, A.M.: Foam mechanics: the linear elastic response of two dimensional spatially periodic cellular materials. Mech. Mater. 6, 27–37 (1987)

    Article  Google Scholar 

  47. Yang, J.F.C., Lakes, R.S.: Transient study of couple stress effects in compact bone: Torsion. J. Biomech. Engng. 103, 275–279 (1981)

    Article  Google Scholar 

  48. Yoo, A., Jasiuk, I.: Couple-stress moduli of a trabecular bone idealized as a 3D periodic cellular network. J. Biomech. 39, 2241–2252 (2006)

    Article  Google Scholar 

  49. Zhu, H.X.: Size-dependent elastic properties of micro- and nanohoneycombs. J. Mech. Phys. Solids. 58, 679–696 (2010)

    Google Scholar 

  50. Zhu, H.X., Hobdell, J.R., Windle, A.H.: Effects of cell irregularity on the elastic properties of 2D Voronoi honeycombs. J. Mech. Phys. Solids. 49, 857–870 (2001)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Francois Ganghoffer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Goda, I., Assidi, M., Ganghoffer, JF. (2013). Cosserat Anisotropic Models of Trabecular Bone from the Homogenization of the Trabecular Structure: 2D and 3D Frameworks. In: Altenbach, H., Forest, S., Krivtsov, A. (eds) Generalized Continua as Models for Materials. Advanced Structured Materials, vol 22. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36394-8_7

Download citation

Publish with us

Policies and ethics