Skip to main content

Buckling of Nonlinearly Elastic Plates with Microstructure

  • Chapter
  • First Online:
Generalized Continua as Models for Materials

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 22))

  • 967 Accesses

Abstract

In the framework of the general nonlinear plate theory we consider a buckling problem for an elastic plate with incompatible plane strains generated by continuous distributions of edge dislocations and wedge disclinations as well as other sources of residual stress (non-elastic growth or plasticity). In contrast to the Föppl-von Kármán model the plane strains are not supposed to be small. To explore buckling transition of such kind of structures, the problem is reduced to a system of nonlinear partial differential equations with respect to the transverse deflection of the plate and the embedded metrics coefficients, which naturally leads to the non-trivial plate shapes that are seen even in the absence of any external forces. In the case of very thin plate (membrane) that doesn’t resist bending we present several exact solutions for the axially-symmetric domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Seung and Nelson [3] deduced this equation in the inextensional limit.

References

  1. Eshelby, J.D., Stroh, A.N.: Dislocations in thin plates. Phil. Mag. (Ser. 7) 42, 1401–1405 (1951)

    MathSciNet  MATH  Google Scholar 

  2. Mitchell, L.H., Head, A.K.: The buckling of a dislocated plate. J. Mech. Phys. Solids 9, 131–139 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  3. Seung, H.S., Nelson, D.R.: Defects in flexible membranes with crystalline order. Phys. Rev. A 38(2), 1005–1018 (1988)

    Article  Google Scholar 

  4. Föppl, A.: Vorlesungen über technische Mechanik. Bd. 5. Teubner, Leipzig (1907)

    Google Scholar 

  5. von Kármán, T.: Festigkeitsprobleme im Maschinenbau / Encyclopädie der Mathematischen Wissenschaften, vol. 4/4C. Teubner, Leipzig (1910)

    Google Scholar 

  6. Stojanovitch, R., Vujoshevitch, L.: Couple stress in non Euclidean continua. Publ. Inst. Math. (Beograd) (N.S.) 2(16), 71–74 (1962)

    MathSciNet  Google Scholar 

  7. Stojanovitch, R.: Equilibrium conditions for internal stresses in non-Euclidean continua and stress spaces. Int. J. Eng. Sci. 1(3), 323–327 (1963)

    Article  MathSciNet  Google Scholar 

  8. Ben-Abraham, S.I.: Generalized stress and non-Riemannian geometry. In: Simmons, J.A., de Wit, R., Bullough, R. (eds.) Fundamental Aspects of Dislocation Theory, vol. 2, pp. 943–962. National Bureau of Standards Special Publication 317, Washington (1970)

    Google Scholar 

  9. Clayton, J.D.: On anholonomic deformation, geometry, and differentiation. Math. Mech. Solids 17(7), 702–735 (2012)

    Article  MathSciNet  Google Scholar 

  10. Lewicka, M., Mahadevan, L., Pakzad, M.R.: The Föppl-von Kármán equations for plates with incompatible strains. Proc. R. Soc. A 467, 402–426 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dervaux, J., Ciarletta, P., Ben Amar, M.: Morphogenesis of thin hyperelastic plates: a constitutive theory of biological growth in the Föppl-von Karman limit. J. Mech. Phys. Solids 57, 458–471 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kücken, M., Newell, A.C.: A model for fingerprint formation. Europhys. Lett. 68(1), 141–146 (2004)

    Article  Google Scholar 

  13. Chen, S., Chrzan, D.C.: Continuum theory of dislocations and buckling in graphene. Phys. Rev. B 84, 214103 (2011)

    Article  Google Scholar 

  14. Kochetov, E.A., Osipov, V.A., Pincak, R.: Electronic properties of disclinated flexible membrane beyond the inextentional limit: application to graphene. J. Phys.: Condens. Matter 22, 395502 (2010)

    Google Scholar 

  15. Li, K., Yan, S.P., Ni, Y., Liang, H.Y., He, L.H.: Controllable buckling of an elastic disc with actuation strain. Europhys. Lett. (EPL) 92, 16003 (2010)

    Article  Google Scholar 

  16. Qiao, D.-Y., Yuan, W.-Z., Yu, Y.-T., Liang, Q., Ma, Z.-B., Li, X.-Y.: The residual stress-induced buckling of annular thin plates and its application in residual stress measurement of thin films. Sens. Actuators A 143, 409–414 (2008)

    Article  Google Scholar 

  17. Derezin, S.V., Zubov, L.M.: Equations of a nonlinear elastic medium with continuously distributed dislocations and disclinations. Dokl. Phys. 44(6), 391–394 (1999)

    MathSciNet  Google Scholar 

  18. Derezin, S.V., Zubov, L.M.: Disclinations in nonlinear elasticity. Z. Angew. Math. Mech. 91(6), 433–442 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lurie, A.I.: Nonlinear Theory of Elasticity. North-Holland, Amsterdam (1990)

    MATH  Google Scholar 

  20. de Wit, R.: Linear theory of static disclinations. In: Simmons, J.A., de Wit, R., Bullough, R. (eds.) Fundamental Aspects of Dislocation Theory, vol. 1, pp. 651–673. National Bureau of Standards Special Publication 317, Washington (1970)

    Google Scholar 

  21. Volterra, V.: Sur l’équilibre des corps élastiques multiplement connexes. Ann. Ecole Norm. Super. (Ser. 3) 24, 401–517 (1907)

    MathSciNet  MATH  Google Scholar 

  22. Kondo, K.: Geometry of Elastic Deformation and Incompatibility: RAAG Memories, vol. 1, Division C. Gakujutsu Bunken Fukyu-kai, Tokyo (1955)

    Google Scholar 

  23. Bilby, B.A., Bullough, R., Smith, E.: Continuous distributions of dislocations: a new application of the methods of non-Riemannian geometry. Proc. R. Soc. London A 231, 263–273 (1955)

    Article  MathSciNet  Google Scholar 

  24. Kröner, E.: Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen. Arch. Rat. Mech. Anal. 4, 273–334 (1960)

    Article  MATH  Google Scholar 

  25. Le, K., Stumpf, H.: Nonlinear contimuum theory of dislocations. Int. J. Eng. Sci. 34(3), 339–358 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  26. Steinmann, P.: Views on multiplicative elastoplasticity and the continuum theory of dislocations. Int. J. Eng. Sci. 34(15), 1717–1735 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  27. Forest, S., Cailletaud, G., Sievert, S.: A Cosserat theory for elastoviscoplastic single crystals at finite deformation. Arch. Mech. 49(4), 705–736 (1997)

    MathSciNet  MATH  Google Scholar 

  28. Anthony, K.-H.: Die Theorie der Disklinationen. Arch. Rat. Mech. Anal. 39, 43–88 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  29. Acharya, A., Fressengeas, C.: Coupled phase transformations and plasticity as a field theory of deformation incompatibility. Int. J. Fract. 174, 87–94 (2012)

    Article  Google Scholar 

  30. Norden, A.P.: Affinely Connected Spaces. Nauka, Moscow (1976). (in Russian)

    Google Scholar 

  31. Cartan, E.: Sur les variétés à connexion affine et la théorie de la relativité généralisée. Ann. Sci. École Norm. Super. (Ser. 3) 40, 325–412 (1923)

    MathSciNet  Google Scholar 

  32. Mura, T.: Micromechanics of Defects in Solids. Kluwer Academic Publishers, Boston (1987)

    Book  Google Scholar 

  33. Zubov, L.M.: Large deformation of elastic shells with distributed dislocations. Dokl. Phys. 57(6), 254–257 (2012)

    Article  Google Scholar 

  34. Zubov, L.M.: Von Kármán equations for an elastic plate with dislocations and disclinations. Dokl. Phys. 52(1), 67–70 (2007)

    Article  Google Scholar 

  35. Pogorelov, A.V.: Multidimensional Monge-Ampére Equation. Cambridge Scientific Publishers, Cambridge (2008)

    Google Scholar 

  36. Karyakin, M.I.: Equilibrium and stability of a nonlinear-elastic plate with a tapered disclination. Appl. Mech. Tech. Phys. 33(3), 464–470 (1992)

    Article  MathSciNet  Google Scholar 

  37. Zubov, L.M., Pham, T.H.: Strong deflections of circular plate with continuously distributed disclinations (in Russian). Izv. VUZov, Sev.-Kav. Reg. Issue 4, 28–33 (2010)

    Google Scholar 

  38. Lazopoulos, K.A.: On the gradient strain elasticity theory of plates. Euro. J. Mech. A. Solids 23, 843–852 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  39. Altan, B.S., Aifantis, E.C.: On the structure of the mode III crack-tip in gradient elasticity. Scr. Metall. 26, 319–324 (1992)

    Article  Google Scholar 

Download references

Acknowledgments

The author thanks Prof. L.M. Zubov for fruitful discussions.

This work was supported by the Russian Foundation for Basic Research (via the grants 12-01-00038 and 12-01-91270) and the Federal target programme “Research and Pedagogical Cadre for Innovative Russia” for 2009–2013 years (state contract N P596).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svyatoslav Derezin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Derezin, S. (2013). Buckling of Nonlinearly Elastic Plates with Microstructure. In: Altenbach, H., Forest, S., Krivtsov, A. (eds) Generalized Continua as Models for Materials. Advanced Structured Materials, vol 22. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36394-8_4

Download citation

Publish with us

Policies and ethics