Skip to main content

Continuum Modelling of Shear-Coupled Grain Boundary Migration

  • Chapter
  • First Online:
  • 1006 Accesses

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 22))

Abstract

The deformation accommodation mechanisms associated to grain boundaries (GBs) significantly affect the mechanical behavior of nano-polycrystals. Among these mechanisms, stress-induced GB migration is now seen to compete or interplay with other intra-granular and GB mechanisms in a wide range of temperatures. A complete micromechanics-based model is here proposed using the concepts of continuum thermodynamics and kinematics to derive a new constitutive model able to describe stress-induced GB migration. Like non diffusive phase-transformations, stress-induced GB migration can be considered on the thermodynamics point of view of conservative nature (diffusionless but thermally activated) until high temperature with respect to melting point. Here, in the framework of continuum micro-mechanics which should be easily implemented in a polycrystalline model, we will first describe the micromechanical framework: the kinematics and the thermodynamics associated with additive mechanisms including plastic deformation in the bulk crystals, GB migration and GB sliding. For the sake of illustration of the present general theory, we will focus on planar bi-crystals and only perfect shear-coupling GB migration situations of [001] symmetric tilt GBs in Cu. Numerical examples and responses of the micromechanical model are given for these bi-crystals considering both isotropic and anisotropic elasticity. These ones are fed by computer-aided MD simulations for which deformation mechanisms are identified.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    LAMMPS Molecular Dynamics Simulator; http///lammps.sandia.gov/.

References

  1. Cahn, J.W., Mishin, Y., Suzuki, A.: Coupling grain boundary motion to shear deformation. Acta Mater. 54, 4953–4975 (2006)

    Article  Google Scholar 

  2. Cahn, J.W., Mishin, Y.: Duality of dislocation content of grain boundaries. Philos. Mag. 86, 1–11 (2006)

    Article  Google Scholar 

  3. Bobylev, S.V., Mozorov, N.F., Ovid’ko, I.A.: Cooperative grain boundary sliding and migration process in nanocrystalline solids. Phys. Rev. Lett. 105, 055, 504 (2010)

    Google Scholar 

  4. Cahn, J.W., Taylor, J.E.: A unified approach to motion of grain boundaries, relative tangential translation along grain boundaries and grain rotation. Acta Mater. 52, 4887–4898 (2004)

    Article  Google Scholar 

  5. Zhang, H., Du, D., Srolovitz, D.J.: Effects of boundary inclination and boundary type on shear-driven grain boundary migration. Philos. Mag. 88, 243–256 (2008)

    Article  Google Scholar 

  6. Frank, F.C.: In: Symposium on the plastic deformation of crystalline solids, pp. 150–154. Carnegie Institute of Technology, Pittsburgh (1950)

    Google Scholar 

  7. Bilby, B.A.: In: Bristol Conference Report on Defects in Crystalline Solids, pp. 124–133. The Physical Society of London (1955)

    Google Scholar 

  8. Bullough, R., Bilby, B.A.: Continuous distributions of dislocations: surface dislocations and the crystallography of martensitic transformations. Proc. Phys. Soc. B 69, 1276–1286 (1956)

    Article  Google Scholar 

  9. Tucker, G.J., Zimmerman, J.A., McDowell, D.L.: Continuum metrics for deformation and microrotation from atomistic simulations: application to grain boundaries. Int. J. Eng. Sci. 49, 1424–1434 (2011)

    Article  Google Scholar 

  10. Molodov, D.A., Gorkaya, T., Gottstein, G.: Low angle tilt boundary migration coupled to shear deformation. Acta Mater. 55, 1843–1848 (2007)

    Article  Google Scholar 

  11. Mishin, Y., Suzuki, A., Uberuaga, B.P., Voter, A.F.: Stick-slip mechanism of grain boundaries studied by accelerated molecular dynamics. Phys. Rev. B 75, 224, 101 (2007)

    Google Scholar 

  12. Ivanov, V.A., Mishin, Y.: Dynamics of grain boundary motion coupled to shear deformation: an analytical model and its verification by molecular dynamics. Phys. Rev. B 78, 064, 106 (2008)

    Google Scholar 

  13. Fischer, F.D., Schaden, T., Appel, F., Clemens, H.: Mechanical twins, their development and growth. Eur. J. Mech. A. Solids 22, 709–726 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Rae, C.M.F., Smith, D.A.: On the mechanisms of grain boundary migration. Philos. Mag. A 41, 477–492 (1980)

    Article  Google Scholar 

  15. Hirth, J.P., Pond, R.C.: Steps, dislocations and disconnections as interface defects relating to structure and phase transformations. Acta Mater. 44, 4749–4763 (1996)

    Article  Google Scholar 

  16. Abeyaratne, R., Knowles, J.K.: On the driving traction acting on a surface of strain discontinuity in a continuum. J. Mech. Phys. Solids 38, 345–360 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cermelli, P., Gurtin, M.E.: The dynamics of solid-solid phase transitions-2. Incoherent interfaces. Arch. Rational. Mech. Anal. 127, 41–99 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fischer, F.D., Simha, N.K., Svoboda, J.: Kinetics of diffusional transformation in multicomponent elastic-plastic materials. J. Engng. Mater. Tech. 125, 266–276 (1998)

    Article  Google Scholar 

  19. Hadamard, J.: Lecons sur la propagation des ondes et les equations de l’hydrodynamique. College de France, Paris (1903)

    MATH  Google Scholar 

  20. Coleman, B.D., Gurtin, M.E.: Thermodynamics with internal state variables. J. Chem. Phys. 47, 597–613 (1967)

    Article  Google Scholar 

  21. Maugin, G.A.: Configurational forces: Thermomechanics. Mathematics and Numerics. CRC Press, Taylor and Francis, New York (2011)

    MATH  Google Scholar 

  22. Eshelby, J.D.: Energy relations and energy-momentum tensor in continuum mechanics. In: Kanninen, M., et al. (eds.) Inelastic Behaviour of Solids, pp. 77–115. McGraw-Hill, New York (1970)

    Google Scholar 

  23. Petryk, H.: Macroscopic rate-variables in solids undergoing phase transformation. J. Mech. Phys. Solids 46, 873–894 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. Berbenni, S., Paliwal, B., Cherkaoui, M.: A micromechanics-based model for shear-coupled grain boundary migration in bicrystals. Int. J. Plasticity (2013),http://dx.doi.org/10.1016/j.ijplas.2012.11.011

  25. Nye, J.F.: Some geometrical relations in dislocated crystals. Acta Metall. 1, 153–162 (1953)

    Article  Google Scholar 

  26. Kröner, E.: Kontinuumstheorie der Versetzungen und Eigenspannungen. In: Collatz, L., Loesch, F. (eds.) Ergebnisse der Angewewandte Mathematik 5. Springer Verlag, Berlin (1958)

    Google Scholar 

  27. Willis, J.R.: Second-order effects of dislocations in anisotropic crystals. Int. J. Eng. Sci. 5, 171–190 (1967)

    Article  MATH  Google Scholar 

  28. Mura, T.: Micromechanics of defects in solids. Kluwer Academic Publishers, Dordrecht, The Netherlands (1987)

    Book  Google Scholar 

  29. Rice, J.R.: Continuum mechanics and thermodynamics plasticity in relation to microscale deformation mechanisms. In: Argon, A.S. (ed.) Constitutive Equations in Plasticity, pp. 23–75. MIT Press, Cambridge (1975)

    Google Scholar 

  30. Gorkaya, T., Molodov, D.A., Gottstein, G.: Stress-driven migration of symmetrical [100] tilt grain boundaries in Al bicrystals. Acta Mater. 57, 5396–5405 (2009)

    Article  Google Scholar 

  31. Li, J.C.M.: High-angle tilt boundary-a dislocation core model. J. Appl. Phys. 32, 525–541 (1961)

    Article  Google Scholar 

  32. Mishin, Y., Mehl, M.J., Papaconstantopoulos, D.A., Voter, A.F., Kress, J.D.: Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations. Phys. Rev. B 63, 224, 106 (2001)

    Google Scholar 

  33. Faken, D., Jonsson, H.: Systematic analysis of local atomic structure combined with 3D computer graphics. Comput. Mater. Sci. 2, 279–286 (1994)

    Article  Google Scholar 

  34. Tsuzuki, H., Branicio, P.S., Rino, J.P.: Structural characterization of deformed crystals by analysis of common atomic neighborhood. Comp. Phys. Comm. 177, 518–523 (2007)

    Article  Google Scholar 

  35. Hill, R.: The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. Lond. 65, 349–354 (1952)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the French “Agence Nationale de la Recherche” under contract agreement ANR-07-BLAN-0186 for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Berbenni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Berbenni, S., Paliwal, B., Cherkaoui, M. (2013). Continuum Modelling of Shear-Coupled Grain Boundary Migration. In: Altenbach, H., Forest, S., Krivtsov, A. (eds) Generalized Continua as Models for Materials. Advanced Structured Materials, vol 22. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36394-8_3

Download citation

Publish with us

Policies and ethics