Skip to main content

Justification of the Bending-Gradient Theory Through Asymptotic Expansions

  • Chapter
  • First Online:
Generalized Continua as Models for Materials

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 22))

Abstract

In a recent work, a new plate theory for thick plates was suggested where the static unknowns are those of the Kirchhoff-Love theory, to which six components are added representing the gradient of the bending moment [1]. This theory, called the Bending-Gradient theory, is the extension to multilayered plates of the Reissner-Mindlin theory which appears as a special case when the plate is homogeneous. This theory was derived following the ideas from Reissner [2] without assuming a homogeneous plate. However, it is also possible to give a justification through asymptotic expansions. In the present paper, the latter are applied one order higher than the leading order to a laminated plate following monoclinic symmetry. Using variational arguments, it is possible to derive the Bending-Gradient theory. This could explain the convergence when the thickness is small of the Bending-Gradient theory to the exact solution illustrated in [3]. However, the question of the edge-effects and boundary conditions remains open.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lebée, A., Sab, K.: A Bending-Gradient model for thick plates. Part I: Theory. Int. J. Solids Struct. 48(20), 2878–2888 (2011)

    Article  Google Scholar 

  2. Reissner, E.: The effect of transverse shear deformation on the bending of elastic plates. J. Appl. Mech. 12(2), 69–77 (1945)

    MathSciNet  Google Scholar 

  3. Lebée, A., Sab, K.: A Bending-Gradient model for thick plates. Part II: Closed-form solutions for cylindrical bending of laminates. Int. J. Solids Struct. 48(20), 2889–2901 (2011)

    Article  Google Scholar 

  4. Ciarlet, P.G., Destuynder, P.: Justification of the 2-dimensional linear plate model. J. Mecan. 18(2), 315–344 (1979)

    MathSciNet  MATH  Google Scholar 

  5. Caillerie, D.: Thin elastic and periodic plates. Math. Methods Appl. Sci. 6(1), 159–191 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  6. Kohn, R.V., Vogelius, M.: A new model for thin plates with rapidly varying thickness. Int. J. Solids Struct. 20(4), 333–350 (1984)

    Article  MATH  Google Scholar 

  7. Lewiński, T.: Effective models of composite periodic plates: I. Asymptotic solution. Int. J. Solids Struct. 27(9), 1155–1172 (1991)

    Google Scholar 

  8. Sutyrin, V.G., Hodges, D.H.: On asymptotically correct linear laminated plate theory. Int. J. Solids Struct. 33(25), 3649–3671 (1996)

    Article  MATH  Google Scholar 

  9. Reddy, J.N.: On refined computational models of composite laminates. Int. J. Numer. Methods Eng. 27(2), 361–382 (1989)

    Article  MATH  Google Scholar 

  10. Altenbach, H.: Theories for laminated and sandwich plates. Mech. Comp. Mater. 34(3), 243–252 (1998)

    Article  Google Scholar 

  11. Noor, A.K., Malik, M.: An assessment of five modeling approaches for thermo-mechanical stress analysis of laminated composite panels. Comput. Mech. 25(1), 43–58 (2000)

    Article  MATH  Google Scholar 

  12. Carrera, E.: Theories and finite elements for multilayered, anisotropic, composite plates and shells. Arch. Comput. Methods Eng. 9(2), 87–140 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Diaz Diaz, A.: Un modèle de stratifiés. C. R. Acad. Sci. Ser. IIB Mech. 329(12), 873–879 (2001)

    Google Scholar 

  14. Lebée, A., Sab, K.: Homogenization of thick periodic plates: application of the Bending-Gradient plate theory to a folded core sandwich panel. Int. J. Solids Struct. 49(19–20), 2778–2792 (2012)

    Article  Google Scholar 

  15. Lebée, A., Sab, K.: Homogenization of cellular sandwich panels. C. R. Mécan. 340(4–5), 320–337 (2012)

    Article  Google Scholar 

  16. Lebée, A., Sab, K.: Homogenization of a space frame as a thick plate: application of the Bending-Gradient theory to a beam lattice. Comput. Struct. (accepted). doi:10.1016/j.compstruc.2013.01.011

  17. Sanchez-Palencia, E.: Non-Homogeneous Media and Vibration Theory, Lecture Notes in Physics, vol. 127. Springer, Berlin (1980)

    Google Scholar 

  18. Dallot, J., Sab, K.: Limit analysis of multi-layered plates. Part I: The homogenized Love-Kirchhoff model. J. Mech. Phys. Solids 56(2), 561–580 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Sanchez Hubert, J., Sanchez-Palencia, E.: Introduction aux méthodes asymptotiques et à l’homogénéisation: application à la mécanique des milieux continus, Masson, Paris (1992)

    Google Scholar 

  20. Triantafyllidis, N., Bardenhagen, S.: The influence of scale size on the stability of periodic solids and the role of associated higher order gradient continuum models. J. Mech. Phys. Solids 44(11), 1891–1928 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  21. Smyshlyaev, V.P., Cherednichenko, K.D.: On rigorous derivation of strain gradient effects in the overall behaviour of periodic heterogeneous media. J. Mech. Phys. Solids 48(6–7), 1325–1357 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Bakhvalov, N., Panasenko, G.: Homogenisation: averaging processes in periodic media. Kluwer Academic Publishers, Dordrecht (1989)

    Book  MATH  Google Scholar 

  23. Boutin, C.: Microstructural effects in elastic composites. Int. J. Solids Struct. 33(7), 1023–1051 (1996)

    Article  MATH  Google Scholar 

  24. Buannic, N., Cartraud, P.: Higher-order effective modeling of periodic heterogeneous beams. I. Asymptotic expansion method. Int. J. Solids Struct. 38(40–41), 7139–7161 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. Buannic, N., Cartraud, P.: Higher-order effective modeling of periodic heterogeneous beams. II. Derivation of the proper boundary conditions for the interior asymptotic solution. Int. J. Solids Struct. 38(40–41), 7163–7180 (2001)

    Article  MathSciNet  Google Scholar 

  26. Berdichevsky, V.L.: Variational-asymptotic method of constructing a theory of shells. J. Appl. Math. Mech. 43(4), 711–736 (1979)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur Lebée .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lebée, A., Sab, K. (2013). Justification of the Bending-Gradient Theory Through Asymptotic Expansions. In: Altenbach, H., Forest, S., Krivtsov, A. (eds) Generalized Continua as Models for Materials. Advanced Structured Materials, vol 22. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36394-8_12

Download citation

Publish with us

Policies and ethics