Skip to main content

Description of Thermal and Micro-Structural Processes in Generalized Continua: Zhilin’s Method and its Modifications

  • Chapter
  • First Online:
Generalized Continua as Models for Materials

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 22))

Abstract

The method of description of thermal and micro-structural processes, developed by P.A.Zhilin is discussed. The main idea of the method consists of transformation of the energy balance equation to a special form called the reduced equation of energy balance. This form is obtained by separation of the stress tensors into elastic and dissipative components and introduction of quantities characterizing the physical processes associated with neglected degrees of freedom. As a result the energy balance equation is divided into two or more parts, one of them is the reduced equation of energy balance, and the rest have a sense of heat conduction equation, diffusion equation, equation of structural transformations, etc. We discuss the applicability of this method to generalized continua, in particular, to media with rotational degrees of freedom and media with microstructure. Comparative analysis of various modifications of Zhilin’s method, differed in the way of temperature, entropy and chemical potential introduction, is carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Details are presented in E.N. Vilchevskaya. Appendix: Formula calculus in [35].

References

  1. Altenbach, H., Naumenko, K., Zhilin, P.: A micro-polar theory for binary media with application to phase-transitional flow of fiber suspensions. Continuum Mech. Thermodyn. 15(6), 539–570 (2003)

    Google Scholar 

  2. Baierlein, R.: The elusive chemical potential. Am. J. Phys. 69(4), 423–434 (2001)

    Google Scholar 

  3. Boltzmann, L.: Zur Theorie der elastischen Nachwirkung. Kaiserl. Akad. Wiss. Wien. Math. Naturw. Kl. 70(II), 275–306 (1874)

    Google Scholar 

  4. Capriz, G.: Continua with Microstructure. Springer, Berlin (1989)

    Book  MATH  Google Scholar 

  5. Clausius, R.: On the motive power of heat and on the laws which can be deducted from it for the theory of heat (translated from German by Magie, W.F.). Dover, New York (1960)

    Google Scholar 

  6. Cosserat, E., Cosserat F.: Théorie des corps déformables. Hermann, Paris (1909)

    Google Scholar 

  7. Epstein, M., de Leon, M.: Geometrical theory of uniform Cosserat media. J. Geom. Phys. 26, 127–170 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ericksen, J.L., Truesdell, C.: Exact theory of stress and strain in rods and shells. Arch. Ration. Mech. Anal. 1, 295–323 (1957)

    Article  MathSciNet  Google Scholar 

  9. Eringen, A.C.: Theory of Micropolar Elastisity. Academic Press, New York (1968)

    Google Scholar 

  10. Eringen, A.C.: Microcontinuum Field Theories. Springer, New York (1999)

    Book  MATH  Google Scholar 

  11. Job, G., Herrmann, F.: Chemical potential—a quantity in search of recognition. Eur. J. Phys. 27, 353–371 (2006)

    Article  Google Scholar 

  12. Gibbs, J.W.: On the equilibrium of heterogeneous substances. Trans. Conn. Acad. Sci. III, 108–248 (1875)

    Google Scholar 

  13. Green, A.E., Rivlin, R.S.: Multipolar continuum mechanics. Arch. Ration. Mech. Anal. 17, 113–147 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kafadar, C.B., Eringen, A.C.: Micropolar media-I: the classical theory. Int. J. Eng. Sci. 9, 271–305 (1971)

    Article  MATH  Google Scholar 

  15. Kondepudi, D., Prigogine, I.: Modern thermodynamics. From Heat Engines to Dissipative Structures. Wiley, New York (1998)

    Google Scholar 

  16. Laurendeau, N.M.: Statistical Thermodynamics—Fundamentals and Applications. Cambridge University Press, New York (2005)

    Google Scholar 

  17. Maugin, G.A.: Thermomechanics of Nonlinear Irreversible Behaviors: An Introduction. World Scientific, Singapore, New York (1999)

    MATH  Google Scholar 

  18. Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–78 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  19. Müller, I.: A History of Thermodynamics: The Doctrine of Energy and Entropy. Springer, Berlin (2007)

    Google Scholar 

  20. Müller, I., Müller, W.H.: Fundamentals of thermodynamics and applications: with historical annotations and many citations from Avogadro to Zermelo. Springer, Berlin (2009)

    Google Scholar 

  21. Muschik, W., Papenfuss, C., Ehrentraut, H.: A sketch of continuum thermodynamics. J. Nonnewton. Fluid Mech. 96, 255–290 (2001)

    Article  MATH  Google Scholar 

  22. Nowacki, W.: Dynamic Problems of Thermoelasticity. Polish Scientific Publisher, Warszawa (1975)

    Google Scholar 

  23. Prigogine, I.: Introduction to Thermodynamics of Irreversible Processes. Charles C. Thomas Publishers, Springfield (1955)

    Google Scholar 

  24. Slawianowski, J.J.: Classical and quantized affine models of structured media. Meccanica 40, 365–387 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Toupin, R.A.: Elastic materials with couple-stresses. Arch. Ration. Mech. Anal. 11, 385–414 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  26. Toupin, R.A.: Theories of elasticity with couple stresses. Arch. Rational Mech. Anal. 17, 85–112 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  27. Truesdell, C., Toupin, R.A.: The classical field theories. In: Flügge, S. (ed.) Encyclopedia of Phycics, vol. III/1. Springer, Heidelberg (1960)

    Google Scholar 

  28. Truesdell, C.: Rational Thermodynamics. Springer, New York (1984)

    Book  MATH  Google Scholar 

  29. Truesdell, C.: The Elements of Continuum Mechanics. Springer, New York (1965)

    Google Scholar 

  30. Zhilin, P.A.: Basic equations of the theory of non-elastic media. Proc. of the XXVIII Summer School ”Actual Problems in Mechanics”. St. Petersburg, pp 14–58 (in Russ.) (2001)

    Google Scholar 

  31. Zhilin, P.A.: Phase Transitions and General Theory of Elasto-Plastic Bodies. Proc. of XXIX Summer School - Conference ”Advanced Problems in Mechanics”. St. Petersburg, pp 36–48 (2002)

    Google Scholar 

  32. Zhilin, P.A.: Mathematical theory of non-elastic media. Uspechi mechaniki (Advances in Mechanics) 2(4), 3–36 (in Russ.) (2003)

    Google Scholar 

  33. Zhilin, P.A.: On the general theory of non-elastic media. Mechanics of materials and strength of constructions. Proc. of St. Petersburg State Polytechnical University, vol. 489, pp 8–27 (in Russ.) (2004)

    Google Scholar 

  34. Zhilin, P.A.: Advanced Problems in Mechanics, vol. 2, St. Petersburg (2006)

    Google Scholar 

  35. Zhilin, P.A.: Racional’naya mekhanika sploshnykh sred (Rational Continuum Mecanics, in Russ.). Politechnic university publishing house, St. Petersburg (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Ivanova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ivanova, E., Vilchevskaya, E. (2013). Description of Thermal and Micro-Structural Processes in Generalized Continua: Zhilin’s Method and its Modifications. In: Altenbach, H., Forest, S., Krivtsov, A. (eds) Generalized Continua as Models for Materials. Advanced Structured Materials, vol 22. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36394-8_10

Download citation

Publish with us

Policies and ethics