Skip to main content

Rotational Speed Control of Single Bacterial Flagellar Motor

  • Chapter

Abstract

Some researchers proposed the methods to fabricate the bacteria-driven microobjects using various flagellated bacteria. Darnton et al. achieved a random delivery of the bacteria-driven microobject using Serratia marcescens [1]. Behkam et al. improved the directivity of the delivery of the bacteria-driven microobject using S. marcescens by limiting the attaching area of the bacteria [2].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Darnton, N., Turner, L., Breuer, K., Berg, H.C.: Moving Fluid with Bacterial Carpets. Biophys. J. 86, 1863–1870 (2004)

    Article  Google Scholar 

  2. Behkam, B., Sitti, M.: Effect of Quantity and Configuration of Attached Bacteria on Bacterial Propulsion of Microbeads. Appl. Phys. Lett. 93, 223901 (2008)

    Article  Google Scholar 

  3. Martel, S., Mohammadi, M., Felfoul, O., Lu, Z., Pouponneau, P.: Flagellated Magnetotactic Bacteria as Controlled MRI-trackable Propulsion and Steering Systems for Medical Nanorobots Operating in the Human Microvasculature. Intl. J. Robotics Research 28(4), 571–582 (2009)

    Article  Google Scholar 

  4. Martel, S., Felfoul, O., Mathieu, J.-B., Chanu, A., Tamaz, S., Mohammadi, M., Mankiewicz, M., Tabatabaei, N.: MRI-based Medical Nanorobotic Platform for the Control of Magnetic Nanoparticles and Flagellated Bacteria for Target Interventions in Human Capillaries. Intl. J. Robotics Research 28(9), 1169–1182 (2009)

    Article  Google Scholar 

  5. Weibel, D.B., Garstecki, P., Ryan, D., DiLuzio, W.R., Mayer, M., Seto, J.E., Whitesides, G.M.: Microoxen: Microorganisms to Move Microscale Loads. Proc. Natl. Acad. Sci. 102, 11963–11967 (2005)

    Article  Google Scholar 

  6. Macnab, R.: Flagella and Motility. In: Eschericia Coli and Salmonella, pp. 123–145. American Society for Microbiology, Washington D.C. (1996)

    Google Scholar 

  7. Yorimitsu, T., Homma, M.: Na+-Driven Flagellar Motor of Vibrio. Biochim. Biophys. Acta 1505, 82–93 (2001)

    Article  Google Scholar 

  8. Aldridge, P., Hughes, K.T.: Regulation of Flagellar Assembly. Curr. Opin. Microbiol. 5, 160–165 (2002)

    Article  Google Scholar 

  9. Kojima, S., Blair, D.F.: The Bacterial Flagellar Motor: Structure and Function of a Complex Molecular Machine. Int. Rev. Cytol. 233, 93–134 (2004)

    Article  Google Scholar 

  10. Asai, Y., Kojima, S., Kato, H., Nishioka, N., Kawagishi, I., Homma, M.: Putative Channel Components for the Fast-Rotating Sodium-Driven Flagellar Motor of a Marine Bacterium. J. Bacteriol. 179(16), 5104–5110 (1997)

    Google Scholar 

  11. Dean, G.E., Macnab, R.M., Stader, J., Matsumura, P., Burks, C.: Gene Sequence and Predicted Amino Acid Sequence of the motA Protein, a Membrane-Associated Protein Required for Flagellar Rotation in Escherichia coli. J. Bacteriol. 159(3), 991–999 (1984)

    Google Scholar 

  12. Stader, J., Matsumura, P., Vacante, D., Dean, G.E., Macnab, R.M.: Nucleotide Sequence of the Escherichia coli motB Gene and Site-Limited Incorporation of Its Product into the Cytoplasmic Membrane. J. Bacteriol. 166(1), 244–252 (1986)

    Google Scholar 

  13. Sowa, Y., Rowe, A.D., Leake, M.C., Yakushi, T., Homma, M., Ishijima, A., Berry, R.M.: Direct Observation of Steps in Rotation of the Bacterial Flagellar Motor. Nature 437, 916–919 (2005)

    Article  Google Scholar 

  14. Ying, L., Bruckbauer, A., Zhou, D., Gorelik, J., Shevchuk, A., Lab, M., Korchevb, Y., Klenerman, D.: The Scanned Nanopipette: a New Tool for High Resolution Bioimaging and Controlled Deposition of Biomolecules. Phys. Chem. Chem. Phys. 7, 2859–2866 (2005)

    Article  Google Scholar 

  15. Piper, J.D., Li, C., Lo, C.-J., Berry, R., Korchev, Y., Ying, L., Klenerman, D.: Characterization and Application of Controllable Local Chemical Changes Produced by Reagent Delivery from a Nanopipet. J. Am. Chem. Soc. 130, 10386–10393 (2008)

    Article  Google Scholar 

  16. Sánchez, D., Anand, U., Gorelik, J., Benham, C.D., Bountra, C., Lab, M., Klenerman, D., Birch, R., Anand, P., Korchev, Y.: Localized and Non-Contact Mechanical Stimulation of Dorsal Root Ganglion Sensory Neurons using Scanning Ion Conductance Microscopy. J. Neurosci. Methods 159, 26–34 (2007)

    Article  Google Scholar 

  17. Ying, L., Bruckbauer, A., Zhou, D., Gorelik, J., Shevchuk, A., Lab, M., Korchevb, Y., Klenerman, D.: The Scanned Nanopipette: a New Tool for High Resolution Bioimaging and Controlled Deposition of Biomolecules. Phys. Chem. Chem. Phys. 7, 2859–2866 (2005)

    Article  Google Scholar 

  18. Honda, S., Terabe, S.: Capillary Electrophoresis -Bases and Facts-. Kodansha Ltd., Tokyo (1995) (in Japanese)

    Google Scholar 

  19. Darnton, N., Turner, L., Breuer, K., Berg, H.C.: Moving Fluid with Bacterial Carpets. Biophys. J. 86, 1863–1870 (2004)

    Article  Google Scholar 

  20. Behkam, B., Sitti, M.: Effect of Quantity and Configuration of Attached Bacteria on Bacterial Propulsion of Microbeads. Appl. Phys. Lett. 93, 223901 (2008)

    Article  Google Scholar 

  21. Weibel, D.B., Garstecki, P., Ryan, D., DiLuzio, W.R., Mayer, M., Seto, J.E., Whitesides, G.M.: Microoxen: Microorganisms to Move Microscale Loads. Proc. Natl. Acad. Sci. 102, 11963–11967 (2005)

    Article  Google Scholar 

  22. Homma, M., Oota, H., Kojima, S., Kawagishi, I., Imae, Y.: Chemotactic Responses to an Attractant and a Repellent by the Polar and Lateral Flagellar Systems of Vibrio Alginolyticus. Microbiol. 142, 2777–2783 (1996)

    Article  Google Scholar 

  23. Lo, C.J., Leake, M.C., Pilizota, T., Berry, R.M.: Nonequivalence of Membrane Voltage and Iongradient as Driving Forces for the Bacterial Flagellar Motor at Low Load. Biophys. J. 93, 294–302 (2007)

    Article  Google Scholar 

  24. Fung, D.C., Berg, H.C.: Powering the Flagellar Motor of Escherichia coli with an External Voltage Source. Nature 375, 809–812 (1995)

    Article  Google Scholar 

  25. Sowa, Y., Rowe, A.D., Leake, M.C., Yakushi, T., Homma, M., Ishijima, A., Berry, R.M.: Direct Observation of Steps in Rotation of the Bacterial Flagellar Motor. Nature 437, 916–919 (2005)

    Article  Google Scholar 

  26. Silverman, M., Simon, M.: Flagellar rotation and the mechanism of bacterial motility. Nature 249, 73–74 (1974)

    Article  Google Scholar 

  27. Sowa, Y., Berry, R.M.: Bacterial flagellar motor. Q. Rev. Biophys. 41(2), 103–132 (2008)

    Article  Google Scholar 

  28. Howard, J.: Mechanics of Motor Proteins and the Cytoskeleton, pp. 106–107. Sinauer Associates, Sunderland (2001)

    Google Scholar 

  29. Zhang, L., Abbott, J.J., Dong, L., Peyer, K.E., Kratochvil, B.E., Zhang, H., Bergeles, C., Nelson, B.J.: Characterizing the Swimming Properties of Artificial Bacterial Flagella. Nano Lett. 9(10), 3663–3667 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshio Fukuda .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fukuda, T., Arai, F., Nakajima, M. (2013). Rotational Speed Control of Single Bacterial Flagellar Motor. In: Micro-Nanorobotic Manipulation Systems and Their Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36391-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36391-7_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36390-0

  • Online ISBN: 978-3-642-36391-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics