Skip to main content

Abstract

Technologies required for the biomicromanipulation can be classified as follows: Transportation, separation, controls of position and attitude, immobilization, detection, and measurement. Figure 4.1 shows the history of the development of biomicromanipulation for biotechnology and bioengineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jorgenson, J.W., Lukacs, K.D.: Free-zone electrophoresis in glass capillaries. Clinical Chemistry 27(9), 1551–1553 (1981)

    Google Scholar 

  2. Pohl, H.A.: Dielectrophoresis. Cambridge University Press, Cambridge (1978)

    Google Scholar 

  3. Pethig, R.: Application of A.C. electrical fields to the manipulation and characterization of cells. In: Karube, I. (ed.) Automation in Biotechnology, pp. 159–185. Elsevier (1991)

    Google Scholar 

  4. Schnelle, T., Hagedorn, R., Fuhr, G., Fiedler, S., Müller, T.: Three-dimensional electric field traps for manipulation of cells-calculation and experimental verification. Biochem. Biophys. Acta 1157, 127–140 (1993)

    Article  Google Scholar 

  5. Fuhr, G., Shirley, G.S.: Cell handling and caracterization using micron and submicron electrode arrays: state of the art perspectives of seiconductormicrotools. J. Michromech. Microeng. 5, 77–85 (1995)

    Article  Google Scholar 

  6. Fuhr, G., Glasser, H., Müller, T., Schnelle, T.: Cell manipulation and cultivation under a.c. electric field influence in highly conductive culture media. Biochim. Biophys. Acta 1201, 353–360 (1994)

    Article  Google Scholar 

  7. Müller, T., Gerardio, A., Schnelle, T., Shirley, G.S., Bordoni, F., De-Gasperis, G., Leoni, R., Fuhr, G.: Trapping of micron and submicron particles by high frequency fields and hydrodynamic forces. J. of Physics 29, 340–349 (1996)

    Google Scholar 

  8. Fuhr, G., Hagedorn, R., Göring, H.: Separation of different cell types by rotating electricfields. Plant Cell Physiol. 26(8), 1527–1531 (1985)

    Google Scholar 

  9. Ashkin, A., Dziedzic, J.M., Bjorkholm, J.E., Chu, S.: Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288–291 (1986)

    Article  Google Scholar 

  10. Mio, Marr, D.W.M.: Adv. Mater. 12, 917 (2000)

    Google Scholar 

  11. Micro Chemistry, Masuhara Microphotoconversion, Kagakudoujin (1993) (in Japanese)

    Google Scholar 

  12. Arai, F., Sakami, T., Yosikawa, K., Maruyama, H., Fukuda, T.: Proc. of the 2003 IEEE/RSJ Intl. Conference on Intelligent Robots and Systems, 2121 (2003)

    Google Scholar 

  13. Arai, F., Yoshikawa, K., Sakami, T., Fukuda, T.: Synchronized laser micromanipulation of multiple targets along each trajectory by single laser. Applied Physics Letters 85(19), 4301–4303 (2004)

    Article  Google Scholar 

  14. Harrison, D.J., Manz, A., Fan, Z., Lüdi, H., Widmer, H.M.: Capillary Electrophoresis and Sample Injection Systems Integrated on a Planar Glass Chip. Anal. Chem. 64, 1926–1932 (1992)

    Article  Google Scholar 

  15. Saiki, R.K., Scharf, S., Faloona, F., Mullis, K.B., Horn, G.T., Erlich, H.A., Arnhein, N.: Enzymatic Amplification of Beta-Globin Genomic, Sequences and Restriction Site Analysis for Diagnosis of Sickle Cell Anemia. Science 230, 1350–1354 (1988)

    Article  Google Scholar 

  16. Harrison, D.J., Fluri, K., Seiler, K., Fan, Z., Eenhauser, C.S., Manz, A.: Micromachining a Miniaturized Capillary Electrophoresis-Based Chemical Analysis System on a Chip. Science 261 (August 13, 1993)

    Google Scholar 

  17. Seiler, K., Harrison, D.J., Manz, A.: Planar Glass Chips for Capillary Electrophoresis: Repetitive Sample Injection, Quantation, and Separation Efficiency. Anal. Chem. 65, 1481–1488 (1993)

    Article  Google Scholar 

  18. ERenhauser, C.S., Manz, A., Windmer, H.M.: Glass Chips for High-Speed Capillary Electrophoresis Separations with Submicrometer Plate Heights. Anal. Chem. 65, 2637–2642 (1993)

    Article  Google Scholar 

  19. Jacobson, S.C., HergenrAoder, R., Koutny, L.B., Ramsey, J.M.: High-Speed Separation on a Microchip. Anal. Chem. 66, 1114–1118 (1994)

    Article  Google Scholar 

  20. Moore Jr., W., Jacobson, S.C., Ramsey, J.M.: Microchip Separations of Neutral Species via Micellar Electrokinetic Capillary Chromatography. Anal. Chem. 67, 4184–4189 (1995)

    Article  Google Scholar 

  21. Fan, Z.H., Harrison, D.J.: Micromachining of Capillary Electrophoresis Injectors and Separators on Glass Chips and Evaluation of Flow at Capillary Intersections. Anal. Chem. 66, 177–184 (1994)

    Article  Google Scholar 

  22. Effenhauser, C.S., Paulus, A., Manz, A., Widmer, H.M.: High-Speed separation of Antisense Oligonoucleotides on a Micromachined Capillary Electrophoresis Device. Anal. Chem. 66, 2949–2953 (1994)

    Article  Google Scholar 

  23. Jacobson, S.C., Moore, A.W., Ramsey, J.M.: Fused Quartz Substrates for Microchip Electrophoresis. Anal. Chem. 67, 2059–2063 (1995)

    Article  Google Scholar 

  24. Jacobson, S.C., Ramsey, J.M.: Electrokinetic Focusing in Microfabricated Channel Structures. Anal. Chem. 69, 3212–3217 (1997)

    Article  Google Scholar 

  25. Jacobson, S.C., Ramsey, J.M.: Integrated Microdevice for DNA Restriction Fragment Analysis. Anal. Chem. 68, 720–723 (1996)

    Article  Google Scholar 

  26. Fluri, K., Fitzpatrick, G., Chiem, N., Harrison, D.J.: Integrated Capillary Electrophoresis Devices with an Efficient Postcolumn Reactor in Planar Quartz and Glass chips. Anal. Chem. 68, 4285–4290 (1996)

    Article  Google Scholar 

  27. The Incredible Shrinking Laboratory, Research News, Science, vol. 268 (April 7, 1995)

    Google Scholar 

  28. Woolley, T., Mathies, R.A.: Ultra-high-speed DNA fragment separations using microfabricated capillary array electrophresis chips. Proc. Natl. Acad. Sci. USA 91, 11348–11352 (1994)

    Article  Google Scholar 

  29. Woolley, T., Mathies, R.A.: Ultra-high-speed DNA Sequencing Using Capillary Electrophresis chips. Anal. Chem. 67, 3676–3680 (1995)

    Article  Google Scholar 

  30. Wooley, T., Hadley, D., Landre, P., de Mello, A.J., Mathies, R.A., Northrup, M.A.: Functional Integration of PCR Amplification and Capillary Electrophoresis in a Microfabricated DNA Analysis Device. Anal. Chem. 68, 4081–4086 (1996)

    Article  Google Scholar 

  31. Foong, S., Wood, K.L., Busch-Vischniac, I.: Design Assessment of Micro-Electro-Mechanical Systems with Applications to a Microbiology Cell Injector. Micromechanical Systems SME, DSC 46, 49–63 (1993)

    Google Scholar 

  32. Swerdlow, H., Jones, B.J., Wittwer, C.T.: Fully Automated DNA Reaction and Analysis in a Fluid Capillary Instrument. Anal. Chem. 69, 848–855 (1997)

    Article  Google Scholar 

  33. Meldrum, R.: A Biomechatronic Fluid Sample Handling System for DNA Processing. In: Proc. of Advanced Intelligent Mechatronics (1997)

    Google Scholar 

  34. Gavin, P.F., Ewing, A.G.: Continuous Separation with Microfabricated Electrophoresis-Electrochemical Array Detection. J. Am. Chem. Soc. 118, 8932–8936 (1996)

    Article  Google Scholar 

  35. Pohl, H.A.: Dielectrophoresis. Cambridge University Press, Cambridge (1978)

    Google Scholar 

  36. Müller, T., Gradl, G., Howitz, S., Shirley, S., Schnelle, T., Fuhr, G.: A 3-D microelectrode system for handling and caging single cells and particles. Biosensors & Bioelectronics 14, 247–256 (1999)

    Article  Google Scholar 

  37. Fu, A.Y., Spence, C., Scherer, A., Arnold, F.H., Quake, S.R.: A microfabricated fluorescence-activated cell sorter. Nature Biotechnology 17, 1109–1111 (1999)

    Article  Google Scholar 

  38. Arai, F., Ichikawa, A., Ogawa, M., Fukuda, T., Horio, K., Itoigawa, K.: High-speed separation system of randomly suspended single living cells by laser trap and dielectrophoresis. Electrophoresis 22(2), 283–288 (2001)

    Article  Google Scholar 

  39. Ichikawa, A., Arai, F., Yoshikawa, K., Uchida, T., Fukuda, T.: In situ formation of a gel microbead for indirect laser micromanipulation of microorganisms. Applied Phys. Lett. 87, 191108 (2005)

    Article  Google Scholar 

  40. Voldman, J., Gray, M.L., Toner, M., Schmidt, M.A.: A Microfabrication-Based Dynamic Array Cytometer. Anal. Chem. 74, 3984–3990 (2002)

    Article  Google Scholar 

  41. Arai, F., Ichikawa, A., Fukuda, T., Katsuragi, T.: Isolation and extraction of target microbes using thermal sol-gel transformation. Analyst (6), 547–551 (2003)

    Google Scholar 

  42. Moriguchi, H., Wakamoto, Y., Sugio, Y., Takahashi, K., Ippei, I., Yasuda, K.: An agar-microchamber cell-cultivation system: flexible change of microchamber shapes during cultivation by photo-thermal etching. Lab Chip 2, 125–130 (2002)

    Article  Google Scholar 

  43. Wakamoto, Y., Ramsdenb, J., Yasuda, K.: Single-cell growth and division dynamics showing epigenetic correlations. Analyst 130, 311–317 (2005)

    Article  Google Scholar 

  44. Chang, C.-H., Ogawa, H., Oki, A., Takai, M., Nagai, M., Hisamoto, H., Horiike, Y.: Healthcare Chip Based on Integrated Electrochemical Sensors Used for Clinical Diagnostics of Bun. Japanese Journal of Applied Physics 45(5A), 4241–4247 (2006)

    Article  Google Scholar 

  45. Mills, A., Tommons, C., Bailey, R.T., Tedford, M.C., Crilly, P.J.: Luminescence temperature sensing using poly(vinyl alcohol)-encapsulated Ru(bpy)32+ films. Analyst 131, 495–500 (2006)

    Article  Google Scholar 

  46. Jain, M.K., Caiand, Q., Grimes, C.A.: A wireless micro-sensor for simultaneous measurement of pH, temperature, and pressure. Smart Mater. Struct. 10, 347–353 (2001)

    Article  Google Scholar 

  47. Arai, F., Endo, T., Yamauchi, R., Fukuda, T.: 3D 6DOF Manipulation of Microbead by Laser Tweezers. Journal of Robotics and Mechatronics 18(2), 153–159 (2006)

    Google Scholar 

  48. Arai, F., Endo, T., Yamuchi, R., Fukuda, T., Shimizu, T., Kamiya, S.: 3D Manipulation of Lipid Nanotubes with Photo-crosslinkable Gel Micro-beads for Nano-assembly. In: Proc. of mTAS 2006, pp. 233–235 (2006)

    Google Scholar 

  49. Gauthier, M., Piat, E.: An electromagnetic micromanipulation system for single-cell manipulation. Journal of Micromechatronics 2(2), 87–119 (2004)

    Article  Google Scholar 

  50. Onda, K., Arai, F.: Multi-beam bilateral teleoperation of holographic optical tweezers accelerated by general-purpose GPU. Optics Express 20(4), 3642–3653 (2012)

    Article  Google Scholar 

  51. Fukuda, T., Tanie, K., Mitsuoka, T.: A Study on Control of a Micromanipulator (1st Report, The basic feature of Micro Gripper and one method of Bilateral control). In: Proc. Micro Robots and Teleoperators Workshop, Hyannis, MA (November 1987)

    Google Scholar 

  52. Arai, F., Andou, D., Fukuda, T., Noda, Y., Ota, T.: Micro Manipulation Based on Micro Physics, Strategy Based on Attractive Force Reduction and Stress Measurement. In: Proc. Int. Conf. on Intelligent Robotics and Systems (IROS), vol. 2, pp. 236–241 (1995)

    Google Scholar 

  53. Arai, D., Andou, Y., Nonoda, T., Fukuda, H., Iwata, K.: Micro Endeffector with Micro Pyramids and Integrated Piezoresistive Force Sensor. In: Proc. Int. Conf. on Intelligent Robotics and Systems (IROS), vol. 2, pp. 842–849 (1996)

    Google Scholar 

  54. Arai, F., Ichikawa, A., Ogawa, M., Fukuda, T., Horio, K., Itoigawa, K.: High-speed separation system of randomly suspended single living cells by laser trap and dielectrophoresis. Electrophoresis 22(2), 283–288 (2001)

    Article  Google Scholar 

  55. Neuman, K.C., Chadd, E.H., Liou, G.F., Bergman, K., Block, S.M.: Characterization of Photdamage to Escherichia coli in Optical Traps. Biophysical Journal 77, 2856 (1999)

    Article  Google Scholar 

  56. Liang, H., Vu, K.T., Krischnan, P., Tang, T.C., Shin, D., Kimel, S., Bers, M.W.: Wavelength dependence of cell cloning efficiency after optical trapping. Biophysical Journal 70, 1529 (1996)

    Article  Google Scholar 

  57. Sasaki, K., Koshioka, M., Misawa, H., Kitamura, N., Masuhara, H.: Pattern Formation and Flow Control of fine Particles by Laser Scanning Micromanipulation. Optics Letters 16(19), 1463–1465 (1991)

    Article  Google Scholar 

  58. Arai, F., Maruyama, H., Ichikawa, A., Sakami, T., Fukuda, T.: Pinpoint Injection and Dielectrophoretic Floating of Autonomously Aligned Microtools. In: Proc. of μTAS 2002, pp. 548–550 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshio Fukuda .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fukuda, T., Arai, F., Nakajima, M. (2013). Micromanipulation System under Optical Microscope. In: Micro-Nanorobotic Manipulation Systems and Their Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36391-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36391-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36390-0

  • Online ISBN: 978-3-642-36391-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics