Skip to main content

Abstract

Historically, the micro-nano materials are investigated in chemistry and biology fields. For example, biological components are basically tiny size ranging in micro-nano meter scale, such as DNA with diameter 2̃ nm. The material is one of the basic component of science In 1991, carbon nanotube was investigated by Prof. Sumio Iijima, then nano-technology was widely paid attention and changed this field [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)

    Article  Google Scholar 

  2. Geim, A.K., Novoselov, K.S.: Nature Materials 6, 183 (2007)

    Google Scholar 

  3. Iijima, S., Ichihashi, T.: Single-Shell Carbon Nanotubes of 1-nm Diameter. Nature 363, 603–605 (1993)

    Article  Google Scholar 

  4. Bethune, D.S., Kiang, C.H., De Vries, M.S., Gorman, G., Savoy, R., Vazquez, J., Beyers, R.: Cobalt-Catalysed Growth of Carbon Nanotubes with Single-Atomic-Layer Walls. Nature 363, 605–607 (1993)

    Article  Google Scholar 

  5. Wang, N., Tang, Z.K., Li, G.D., Chen, J.S.: Single-Walled 4Å Carbon Nanotube Arrays. Nature 408, 50–51 (2000)

    Article  Google Scholar 

  6. Pan, Z.W., Xie, S.S., Chang, B.H., Wang, C.Y., Lu, L., Liu, W., Zhou, W.Y., Li, W.Z., Qian, L.X.: Very Long Carbon Nanotubes. Nature 394, 631–632 (1998)

    Article  Google Scholar 

  7. Zhu, H.W., Xu, C.L., Wu, D.H., Wei, B.Q., Vajtai, R., Ajayan, P.M.: Direct Synthesis of Long Single-Walled Carbon Nanotube Strands. Science 296, 884–886 (2002)

    Article  Google Scholar 

  8. Saito, R., Dresselhaus, G., Dresselhaus, M.S.: Physical Properties of Carbon Nanotubes. ImperialCollege Press, London (1998)

    Book  Google Scholar 

  9. Baughman, R.H., Zakhidov, A.A., de Heer, W.A.: Carbon Nanotubes—the Route Toward Applications. Science 297, 787–792 (2002)

    Article  Google Scholar 

  10. Treacy, M.J., Ebbesen, T.W., Gibson, J.M.: Exceptionally High Young’s Modulus Observed for Individual Carbon Nanotubes. Nature 381, 678–680 (1996)

    Article  Google Scholar 

  11. Wong, E.W., Sheehan, P.E., Lieber, C.M.: Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes. Science 277, 1971–1975 (1997)

    Article  Google Scholar 

  12. Poncharal, P., Wang, Z.L., Ugarte, D., de Heer, W.A.: Electrostatic Deflections and Electro- mechanical Resonances of Carbon Nanotubes. Science 283, 1513–1516 (1999)

    Article  Google Scholar 

  13. Yu, M.F., Lourie, O., Dyer, M.J., Moloni, K., Kelley, T.F., Ruoff, R.S.: Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes under Tensile Load. Science 287, 637–640 (2000)

    Article  Google Scholar 

  14. Krishnan, A., Dujardin, E., Ebbesen, T.W., Yianilos, P.N., Treacy, M.M.J.: Young’s Modulus of Single-Walled Nanotubes. Phys. Rev. B 58, 14013–14019 (1998)

    Article  Google Scholar 

  15. Salvetat, J.-P., Briggs, G.A.D., Bonard, J.-M., Bacsa, R.R., Kulik, A.J., Stockli, T., Burnham, N.A., Forro, L.: Elastic and Shear Moduli of Single-Walled Carbon Nanotube Ropes. Phys. Rev. Lett. 82, 944–947 (1999)

    Article  Google Scholar 

  16. Yu, M.F., Files, B.S., Arepalli, S., Ruoff, R.S.: Tensile Loading of Ropes of Single Wall Carbon Nanotubes and Their Mechanical Properties. Phys. Rev. Lett. 84, 5552–5555 (2000)

    Article  Google Scholar 

  17. Walters, D.A., Ericson, L.M., Casavant, M.J., Liu, J., Colbert, D.T., Smith, K.A., Smalley, R.E.: Elastic Strain of Freely Suspended Single-Wall Carbon Nanotube Ropes. Appl. Phys. Lett. 74, 3803–3805 (1999)

    Article  Google Scholar 

  18. Saito, R., Fujita, M., Dresselhaus, G., Dresselhaus, M.S.: Electronic Structure of Graphene Tubules Based on C60. Phys. Rev. B 46, 1804–1811 (1992)

    Article  Google Scholar 

  19. Ebbesen, T.W., Lezec, H.J., Hiura, H., Bennett, J.W., Ghaemi, H.F., Thio, T.: Electrical Conductivity of Individual Carbon Nanotubes. Nature 382, 54–56 (1996)

    Article  Google Scholar 

  20. Dai, H.J., Wong, E.W., Lieber, C.M.: Probing Electrical Transport in Nanomaterials: Conductivity of Individual Carbon Nanotubes. Science 272, 523–526 (1996)

    Article  Google Scholar 

  21. Liang, W.J., Bockrath, M., Bozovic, D., Hafner, J.H., Tinkham, M., Park, H.: Fabry-Perot Interference in a Nanotube Electron Waveguide. Nature 411, 665–669 (2001)

    Article  Google Scholar 

  22. Frank, S., Poncharal, P., Wang, Z.L., de Heer, W.A.: Carbon Nanotube Quantum Resistors. Science 280, 1744–1746 (1998)

    Article  Google Scholar 

  23. Kim, P., Shi, L., Majumdar, A., Mceuen, P.L.: Thermal Transport Measurements of Individual Multiwalled Nanotubes. Phys. Rev. Lett. 87, 215502 (2001)

    Article  Google Scholar 

  24. Dai, H.J., Hafner, J.H., Rinzler, A.G., Colbert, D.T., Smalley, R.E.: Nanotubes as Nanoprobes in Scanning Probe Microscopy. Nature 384, 147–150 (1996)

    Article  Google Scholar 

  25. Hafner, J.H., Cheung, C.L., Lieber, C.M.: Growth of Nanotubes for Probe Microscopy Tips. Nature 398, 761–762 (1999)

    Article  Google Scholar 

  26. Nishijima, H., Kamo, S., Akita, S., Nakayama, Y., Hohmura, K.I., Yoshimura, S.H., Takeyasu, K.: Carbon-Nanotube Tips for Scanning Probe Microscopy: Preparation by a Controlled Process and Observation of Deoxyribonucleic Acid. Appl. Phys. Lett. 74, 4061–4063 (1999)

    Article  Google Scholar 

  27. Hafner, J.H., Cheung, C.-L., Oosterkamp, T.H., Lieber, C.M.: High-Yield Assembly of Individual Single-Walled Carbon Nanotube Tips for Scanning Probe Microscopies. J. Phys. Chem. B 105, 743–746 (2001)

    Article  Google Scholar 

  28. Kim, P., Lieber, C.M.: Nanotube Nanotweezers. Science 286, 2148–2150 (1999)

    Article  Google Scholar 

  29. Cumings, J., Zettl, A.: Low-Friction Nanoscale Linear Bearing Realized from Multiwall Carbon Nanotubes. Science 289, 602–604 (2000)

    Article  Google Scholar 

  30. Cumings, J., Collins, P.G., Zettl, A.: Peeling and Sharpening Multiwall Nanotubes. Nature 406, 586 (2000)

    Article  Google Scholar 

  31. Kong, J., Franklin, N.R., Zhou, C.W., Chapline, M.G., Peng, S., Cho, K.J., Dai, H.J.: Nanotube Molecular Wires as Chemical Sensors. Science 287, 622–625 (2000)

    Article  Google Scholar 

  32. Tans, S.J., Verchueren, A.R.M., Dekker, C.: Room-Temperature Transistor Based ona Single Carbon Nanotube. Nature 393, 49–52 (1998)

    Article  Google Scholar 

  33. Bachtold, A., Hadley, P., Nakanishi, T., Dekker, C.: Logic Circuits with Carbon Nanotube Transistors. Science 294, 1317–1320 (2001)

    Article  Google Scholar 

  34. Saito, R., Dresselhaus, G., Dresselhaus, M.S.: Tunneling Conductance of Connected Carbon Nanotubes. Phys. Rev. B 53, 2044–2050 (1996)

    Article  Google Scholar 

  35. Chico, L., Crespi, V.H., Benedict, L.X., Louie, S.G., Cohen, M.L.: Pure Carbon Nanoscale Devices: Nanotube Heterojunctions. Phys. Rev. Lett. 76, 971–974 (1996)

    Article  Google Scholar 

  36. Menon, M., Srivastava, D.: Carbon Nanotube ‘T Junctions’: Nanoscale Metal-Semiconductor-Metal Contact Devices. Phys. Rev. Lett. 79, 4453–4456 (1997)

    Article  Google Scholar 

  37. Yao, Z., Postma, H.W.C., Balents, L., Dekker, C.: Carbon Nanotube Intramolecular Junctions. Nature 402, 273–276 (1999)

    Article  Google Scholar 

  38. Postma, H.W.C., Teepen, T., Yao, Z., Grifoni, M., Dekker, C.: Carbon NanotubeSingle-Electron Transistors atRoom Temperature. Science 293, 76–79 (2001)

    Article  Google Scholar 

  39. Fuhrer, M.S., Nygård, J., Shih, L., Forero, M., Yoon, Y.-G., Mazzoni, M.S.C., Choi, H.J., Ihm, J., Louie, S.G., Zettl, A., Mceuen, P.L.: Crossed Nanotube Junctions. Science 288, 494–497 (2000)

    Article  Google Scholar 

  40. Rueckes, T., Kim, K., Joselevich, E., Treng, G.Y., Cheung, C.L., Lieber, C.M.: Carbon Nanotube-Based Nonvolatile Random Access Memory for Molecular Computing Science. Science 289, 94–97 (2000)

    Article  Google Scholar 

  41. Franklin, N.R., Li, Y.M., Chen, R.J., Javey, A., Dai, H.J.: Patterned Growth of Single-Walled Carbon Nanotubes on Full 4-Inch Wafers. Appl. Phys. Lett. 79, 4571–4573 (2001)

    Article  Google Scholar 

  42. Kuttel, O.M., Groening, O., Emmenegger, C., Schlapbach, L.: Electron field emission from phase pure nanotube films grown in a methane/hydrogen plasma. Appl. Phys. Lett. 73, 2113–2115 (1998)

    Article  Google Scholar 

  43. Rinzler, A.G., Hafner, J.H., Nikolaev, P., Lou, L., Kim, S.G., Tomanek, D., Nordlander, P., Colbert, D.T., Smalley, R.E.: Unraveling nanotubes: field emission from an atomic wire. Science 269, 1550–1553 (1995)

    Article  Google Scholar 

  44. de Pablo, P.J., Howell, S., Crittenden, S., Walsh, B., Graugnard, E., Reifenberger, R.: Correlating the location of structural defects with the electrical failure of multiwalled carbon nanotubes. Appl. Phys. Lett. 75, 3941–3943 (1999)

    Article  Google Scholar 

  45. Saito, Y., Hamaguchi, K., Hata, K., Tohji, K., Kasuya, A., Nishina, Y., Uchida, K., Tasaka, Y., Ikazaki, F., Yumura, M.: Field emission from carbon nanotubes: purified single-walled and multi-walled tubes. Ultramicroscopy 73, 1–6 (1998)

    Article  Google Scholar 

  46. Wang, Q.H., Corrigan, T.D., Dai, J.Y., Chang, R.P.H., Krauss, A.R.: Field emission from nanotube bundle emitters at low fields. Appl. Phys. Lett. 70, 3308–3310 (1997)

    Article  Google Scholar 

  47. Kuttel, O.M., Groning, O., Emmenegger, C., Nilsson, L., Maillard, E., Diederich, L., Schlapbach, L.: Field emission from diamond, diamond-like and nanostructured carbon films. Carbon 37, 745–752 (1999)

    Article  Google Scholar 

  48. Bonard, J.M., Stockli, T., Maier, F., De Heer, W.A., Chatelain, A., Salvetat, J.P., Forro, L.: Field-emission-induced luminescence from carbon nanotubes. Phys. Rev. Lett. 81, 1441–1444 (1998)

    Article  Google Scholar 

  49. Tamura, R., Tsukada, M.: Electronic states of the cap structure in the carbon nanotube. Phys. Rev. B 52, 6015–6026 (1995)

    Article  Google Scholar 

  50. Carroll, D.L., Redlich, P., Ajayan, P.M., Charlier, J.C., Blase, X., De Vita, A., Car, R.: Electronic structure and localized states at carbon nanotube tips. Phys. Rev. Lett. 78, 2811–2814 (1997)

    Article  Google Scholar 

  51. Cassell, A.M., Franklin, N.R., Tombler, T.W., Chan, E.M., Han, J., Dai, H.J.: Directed growth of free-standing single-walled carbon nanotubes. J. Am. Chem. Soc. 121, 7875–7976 (1999)

    Article  Google Scholar 

  52. Dean, K.A., Groening, O., Kuttel, O.M., Schlapbach, L.: Nanotube electronic states observed with thermal field emission electron spectroscopy. Appl. Phys. Lett. 75, 2773–2775 (1999)

    Article  Google Scholar 

  53. Dean, K.A., Chalamala, B.R.: Current saturation mechanisms in carbon nanotube field emitters. Appl. Phys. Lett. 76, 375–377 (2000)

    Article  Google Scholar 

  54. Dean, K.A., von Allmen, P., Chalamala, B.R.: Three behavioral states observed in field emission from single-walled carbon nanotube. J. Vac. Sci. Technol. B 17, 1959–1969 (1999)

    Article  Google Scholar 

  55. Obraztsov, A.N., Volkov, A.P., et al.: Role of the curvature of atomic layers in electron field emission from graphitic nanostructured carbon. JETP Lett. 69, 411–417 (1999)

    Article  Google Scholar 

  56. Bonard, J.M., Stockli, T., Maier, F., De Heer, W.A., Chatelain, A., Salvetat, J.P., Forro, L.: Field-emission-induced luminescence from carbon nanotubes. Phys. Rev. Lett. 81, 1441–1444 (1998)

    Article  Google Scholar 

  57. Tamura, R., Tsukada, M.: Electronic states of the cap structure in the carbon nanotube. Phys. Rev. B 52, 6015–6026 (1995)

    Article  Google Scholar 

  58. Carroll, D.L., Redlich, P., Ajayan, P.M., Charlier, J.C., Blase, X., De Vita, A., Car, R.: Electronic structure and localized states at carbon nanotube tips. Phys. Rev. Lett. 78, 2811–2814 (1997)

    Article  Google Scholar 

  59. Lovall, D., Buss, M., Graugnard, E., Anders, R.P., Reifenberger, R.: Electron emission and structural characterization of a rope of single walled carbon nanotubes. Phys. Rev. B 61, 5683–5691 (2000)

    Article  Google Scholar 

  60. Gao, R., Pan, Z.W., Wang, Z.L.: Work function at the tips of multiwalled carbon nanotubes. Appl. Phys. Lett. 78, 1757–1759 (2001)

    Article  Google Scholar 

  61. Ootsu, M.: Nano ・Photonics. Yoneda Inc. (1999) (in Japanese)

    Google Scholar 

  62. Kawata, S.: Photonics and Nanotechnology. Kubapro (2002) (in Japanese)

    Google Scholar 

  63. Igarashi, K., Uchihashi, T., Koivula, A., Wada, M., Kimura, S., Okamoto, T., Penttila, M., Ando, T., Samejima, M.: Traffic Jams Reduce Hydrolytic Efficiency of Cellulaseon Cellulose Surface. Science 333, 1279–1282 (2011)

    Article  Google Scholar 

  64. Bogner, A., Jouneau, P.-H., Thollet, G., Basset, D., Gauthier, C.: A history of scanning electron microscopy developments: Towards “wet-stem” imaging. Micron 38, 390–401 (2007)

    Article  Google Scholar 

  65. Breton, P.J.: From microns to nanometers: Early landmarks in the science of scanning electron microscope imaging. Scanning Microsc. 13, 1–6 (1999)

    Google Scholar 

  66. Danilatos, G.D.: Foundations of environmental scanning electronmicroscopy. Advances in Electronics and Electron Physics 71, 109–250 (1988)

    Article  Google Scholar 

  67. Donald, A.M.: The use of environmental scanning electron microscopy for imaging wet and insulating materials. Nature Materials 2, 511–516 (2003)

    Article  Google Scholar 

  68. Stokes, D.J.: Characterisation of soft condensed matter and delicate materials using environmental scanning electronmicroscopy (esem). Advanced Engineering Materials 3, 126–130 (2001)

    Article  Google Scholar 

  69. Stokes, D.J., Donald, A.M.: In situ mechanical testing of dry and hydrated breadcrumb in the environmental scanning electron microscope (esem). Journal of Materials Science 35, 599–607 (2000)

    Article  Google Scholar 

  70. Horiuchi, S., Hirotsu, S., Asakura, K.: Electron Microscope Q&A, Agune-shouhu-sha (1996) (in Japanese)

    Google Scholar 

  71. Surface Science Society of Japan, Transmission Electron Microscope, Maruzen (1999) (in Japanese)

    Google Scholar 

  72. Kondo, D., Oikawa, T.: Analytical Electron Microscopes for Material Evaluation, Kyoritsu shuppan (1999) (in Japanese)

    Google Scholar 

  73. Surface Science Society of Japan, Scanning Electron Microscope for Nanotechnology, Maruzen (2004) (in Japanese)

    Google Scholar 

  74. Sanche, L.: Dissociative attachment and surface reactions induced by low-energy electrons. J. Vac. Sci. & Technol. B 10, 196–200 (1992)

    Article  Google Scholar 

  75. Broers, A.N., Molzen, W.W., Cuomo, J.J., Wittles, N.D.: Electron-beam fabrication of 80-Å metal structures. Appl. Phys. Lett. 29, 596–598 (1976)

    Article  Google Scholar 

  76. Matsui, S., Mori, K.: New selective deposition technology by electron beam induced surface reaction. J. Vac. Sci. Technol. B 4, 299–304 (1986)

    Article  Google Scholar 

  77. Koops, H.W.P., Weiel, R., Kern, D.P., Baum, T.H.: High-resolution electron-beam induced deposition. J. Vac. Sci. Technol. B 6, 477–481 (1988)

    Article  Google Scholar 

  78. Mccord, M.A., Kern, D.P., Chang, T.H.P.: Direct deposition of 10-nm metallic features with the scanning tunneling microscope. J. Vac. Sci. Technol. B 6, 1877–1880 (1988)

    Article  Google Scholar 

  79. Lee, K.L., Hatzakis, M.: Direct electron-beam patterning for nanolithography. J. Vac. Sci. Technol. B 7, 1941–1946 (1989)

    Article  Google Scholar 

  80. Weber, M., Koops, H.W.P., Gortz, W.: Scanning probe microscopy of deposits employed to image the current density distribution of electron beams. J. Vac. Sci. Technol. B 10, 3116–3119 (1992)

    Article  Google Scholar 

  81. Lee, K.L., Abraham, D.W., Secord, F., Landstein, L.: Submicron Si trench profiling with an electron-beam fabricated atomic force microscope tip. J. Vac. Sci. Technol. B 9, 3562–3568 (1991)

    Article  Google Scholar 

  82. Keller, D.J., Chi-Chung, C.: Imaging steep, high structures by scanning force microscopy with electron beam deposited tips. Surf. Sci. 268, 333–339 (1992)

    Article  Google Scholar 

  83. Gortz, W., Kempf, B., Kretz, J.: Resolution enhanced scanning force microscopy measurements for characterizing dry etching methods applied to titanium masked InP. J. Vac. Sci. Technol. B 13, 34–39 (1995)

    Article  Google Scholar 

  84. Griesinger, U.A., Kaden, C., Lichtenstein, N., Hommel, J., Lehr, G., Bergmann, R., Menschig, A., Schweitzer, H., Hillmer, H., Koops, H.W.P., Kretz, J., Rudolph, M.: Investigations of artificial nanostructures and lithography techniques with a scanning probe microscope. J. Vac. Sci. Technol. B 11, 2441–2445 (1993)

    Article  Google Scholar 

  85. Koops, H.W.P., Kretz, J., Rudolph, M., Weber, M.: Constructive three-dimensional lithography with electron-beam induced deposition for quantum effect devices. J. Vac. Sci. Technol. B 11, 2386–2389 (1993)

    Article  Google Scholar 

  86. Kunz, R.R., Mayer, T.M.: Electron beam induced surface nucleation and low-temperature decomposition of metal carbonyls. J. Vac. Sci. Technol. B 6, 1557–1564 (1988)

    Article  Google Scholar 

  87. Koops, H.W.P., Kretz, J., Weber, M.: Combined lithographies for the reduction of stitching errors in lithography. J. Vac. Sci. & Technol. B 12, 3265–3269 (1994)

    Article  Google Scholar 

  88. Cho, C.C., Bernasek, F.L.: Molybdenum deposition from the decomposition of molybdenum hexacarbonyl. J. Appl. Phys. 65, 3035–3043 (1989)

    Article  Google Scholar 

  89. Weber, M., Koops, H.W.P., Rudolph, M., Kretz, J., Schmidt, G.: New compound quantum dot materials produced by electron-beam induced deposition. J. Vac. Sci. Technol. B 13, 1364–1368 (1995)

    Article  Google Scholar 

  90. Whitesides, G.M., Grzybowski, B.: Self-Assembly at all Scales. Science 295, 2418–2421 (2002)

    Article  Google Scholar 

  91. Tolley, M.T., Kalontarov, M., Neubert, J., Erickson, D., Lipson, H.: Stochastic Modular Robotic Systems: A Study of Fluidic Assembly Strategies. IEEE Trans. Robotics 26, 518–530 (2010)

    Article  Google Scholar 

  92. Beissenhirtz, M.K., Willner, I.: DNA-based machines. Org. Biomol. Chem. 4, 3392–3401 (2006)

    Article  Google Scholar 

  93. Kelly, T.R.: Molecular Motors: Synthetic DNA-Based Walkers Inspired by Kinesin. Angew. Chem. Int. Ed. 44, 4124–4127 (2005)

    Article  Google Scholar 

  94. Nicolau, D.V., Suzuki, H., Mashiko, S., Taguchi, T., Yoshikawa, S.: Actin Motion on Microlithographically Functionalized Myosin Surfaces and Tracks. Biophys. J. 77, 1126–1134 (1999)

    Article  Google Scholar 

  95. Jaber, J.A., Chase, P.B., Schlenoff, J.B.: Actomyosin-Driven Motility on Patterned Polyelectrolyte Mono- and Multilayers. Nano Lett. 3(11), 1505–1509 (2003)

    Article  Google Scholar 

  96. Kakugo, A., Shikinaka, K., Gong, J.P.: Integration of Motor Proteins - Towards an ATP Fueled Soft Actuator. Int. J. Mol. Sci. 9, 1685–1703 (2008)

    Article  Google Scholar 

  97. Osada, Y., Gong, J.P.: Nano-Biomachine from Actin and Myosin Gels. Polymer Sci., Ser. A 51(6), 689–700 (2009)

    Article  Google Scholar 

  98. Konishi, K., Uyeda, T.Q.P., Kubo, T.: Genetic engineering of a Ca2+ dependent chemical switch into the linear biomotor kinesin. FEBS Letters 580, 3589–3594 (2006)

    Article  Google Scholar 

  99. Hiratsuka, Y., Tada, T., Oiwa, K., Kanayama, T., Uyeda, T.Q.P.: Controlling the Direction of Kinesin-Driven Microtubule Movements along Microlithographic Tracks. Biophys. J. 81, 1555–1561 (2001)

    Article  Google Scholar 

  100. Soong, R.K., Bachand, G.D., Neves, H.P., Olkhovets, A.G., Craighead, H.G., Montemagno, C.D.: Powering an Inorganic Nanodevice with a Biomolecular Motor. Science 290, 1555–1558 (2000)

    Article  Google Scholar 

  101. Homma, M., Oota, H., Kojima, S., Kawagishi, I., Imae, Y.: Chemotactic Responses to an Attractant and a Repellent by the Polar and Lateral Flagellar Systems of Vibrio Alginolyticus. Microbiol. 142, 2777–2783 (1996)

    Article  Google Scholar 

  102. Hiratsuka, Y., Miyata, M., Tada, T., Uyeda, T.Q.P.: A Microrotary Motor Powered by Bacteria. Proc. Natl. Acad. Sci. 103(37), 13618–13623 (2006)

    Article  Google Scholar 

  103. Arai, F., Andou, D., Nonoda, Y., Fukuda, T., Iwata, H., Itoigawa, K.: Integrated Microendeffector for Micro-Manipulation. IEEE/ASME Trans. Mechatronics 3(1), 17–23 (1998)

    Article  Google Scholar 

  104. Saito, S., Miyazaki, H., Sato, T.: Pick and Place Operation of Micro Object with High Reliability and Precision Based on Micro Physics under SEM. In: Proc. ICRA 1999, pp. 2736–2743 (1999)

    Google Scholar 

  105. Wong, E.W., Sheehan, P.E., Lieber, C.M.: Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes. Science 277, 1971–1975 (1997)

    Article  Google Scholar 

  106. Falvo, M.R., Clary, G.J., Taylor, R.M., Chi, V., Brooks, F.P., Washburn, S., Superfine, R.: Bending and Buckling of Carbon Nanotubes Under Large Strain. Nature 389, 582–584 (1997)

    Article  Google Scholar 

  107. Postma, H.W.C., Sellmeijer, A., Dekker, C.: Manipulation and Imaging of Individual Single-Walled Carbon Nanotubes with an Atomic force Microscope. Advanced Materials 12, 1299–1302 (2000)

    Article  Google Scholar 

  108. Postma, H.W.C., De Jonge, M., Yao, Z., Dekker, C.: Electrical Transport Through Carbon Nanotube Junctions Created by Mechanical Manipulation. Phys. Rev. B 62, R10653–R10656 (2000)

    Article  Google Scholar 

  109. Hertel, T., Martel, R., Avouris, P.: Manipulation of Individual Carbon Nanotubes and Their Interaction with Surfaces. J. of Phys. Chem. B 102, 910–915 (1998)

    Article  Google Scholar 

  110. Ahlskog, M., Tarkiainen, R., Roschier, L., Hakonen, P.: Single-Electron Transistor Made of Two Crossing Multiwalled Carbon Nanotubes and Its Noise Properties. Appl. Phys. Lett. 77, 4037–4039 (2000)

    Article  Google Scholar 

  111. Falvo, M.R., Taylor II, R.M., Helser, A., Chi, V., Brooks Jr., F.P., Washburn, S., Superfine, R.: Nanometre-Scale Rolling and Sliding of Carbon Nanotubes. Nature 397, 236–238 (1999)

    Article  Google Scholar 

  112. Falvo, M.R., Steele, J., Taylor II, R.M., Superfine, R.: Gearlike Rolling Motion Mediated by Commensurate Contact: Carbon Nanotubes on HOPG. Phys. Rev. B 62, R10665–R10667 (2000)

    Article  Google Scholar 

  113. Dong, L.X., Arai, F., Fukuda, T.: 3D Nanorobotic Manipulation of Nano-Order Objects Inside SEM. In: Proc. of the 2000 International Symposium on Micromechatronics and Human Science, Nagoya, Japan, pp. 151–156 (2000)

    Google Scholar 

  114. Hafner, J.H., Cheung, C.-L., Oosterkamp, T.H., Lieber, C.M.: High-Yield Assembly of Individual Single-Walled Carbon Nanotube Tips for Scanning Probe Microscopies. J. Phys. Chem. B 105, 743–746 (2001)

    Article  Google Scholar 

  115. Yu, M.F., Dyer, M.J., Skidmore, G.D., Rohrs, H.W., Lu, X.K., Ausman, K.D., Von Ehr, J.R., Ruoff, R.S.: Three-Dimensional Manipulation of Carbon Nanotubes Under a Scanning Electron Microscope. Nanotechnology 10, 244–252 (1999)

    Article  Google Scholar 

  116. Dong, L.X., Arai, F., Fukuda, T.: Electron-Beam-Induced Deposition with Carbon Nanotube Emitters. Appl. Phys. Lett. 81, 1919–1921 (2002)

    Article  Google Scholar 

  117. Dong, L.X., Arai, F., Fukuda, T.: Three-Dimensional Nanoassembly of Multi-Walled Carbon Nanotubes Through Nanorobotic Manipulations by Using Electron-Beam-Induced Deposition. In: Proc. of the 1st IEEE Conf. of Nanotechnology (IEEE NANO 2001), Maui, Hawaii, pp. 93–98 (2001)

    Google Scholar 

  118. Dong, L.X., Arai, F., Fukuda, T.: 3D Nanorobotic Manipulations of Multi-Walled Carbon Nanotubes. In: Proc. of the 2001 IEEE International Conf. on Robotics and Automation (ICRA 2001), Seoul, Korea, pp. 632–637 (2001)

    Google Scholar 

  119. Dong, L.X., Arai, F., Fukuda, T.: Inter-Process Measurement of MWNT Rigidity and Fabrication of MWNT Junctions Through Nanorobotic Manipulations. In: American Institute of Physics Conference Proceedings 590: Nanonetwork Materials: Fullerenes, Nanotubes, and Related Materials, pp. 71–74 (2001)

    Google Scholar 

  120. Fukuda, T., Arai, F., Dong, L.X.: Fabrication and Property Analysis of MWNT Junctions Through Nanorobotic Manipulations. Int’l J. of Nonlinear Sciences and Numerical Simulation 3, 753–758 (2002)

    Google Scholar 

  121. Dong, L.X., Arai, F., Fukuda, T.: 3D Nanoassembly of Carbon Nanotubes Through Nanorobotic Manipulations. In: Proc. of the 2002 IEEE Int’l Conf. on Robotics & Automation (ICRA 2002), Washington, U.S.A., May 11-15, pp. 1477–1482 (2002)

    Google Scholar 

  122. Dong, L.X., Arai, F., Fukuda, T.: Mechanochemical Nanorobotic Manipulations of Carbon Nanotubes. Jap. J. Appl. Phys. 42(1 Pt. 1), 295–298 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshio Fukuda .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fukuda, T., Arai, F., Nakajima, M. (2013). Related Technologies on Micro-Nanorobotic Manipulation Systems. In: Micro-Nanorobotic Manipulation Systems and Their Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36391-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36391-7_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36390-0

  • Online ISBN: 978-3-642-36391-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics