Skip to main content

Developments and Prospect of the Rare Earth Permanent-magnet Alloys

  • Chapter

Abstract

The rare earth permanent-magnet alloys are the broadly used foundational functional materials. Rare earth permanent-magnet alloys have achieved great progress in scientific research, manufacturing and application in recent few decades, and their applications have pervaded into every region of national economy. Rare earth permanent-magnet alloy has become important material basis of new technology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Benz M G, Martin D L (1970) Cobalt-samarium permanent magnets prepared by liquid phase sintering. Applied Physics Letters, 17: 176

    Article  ADS  Google Scholar 

  • Buschow K H, et al (1968) Philips Technical Review, 29: 336

    Google Scholar 

  • Cai Xun, Rong Yonghua (2012) Base tutorial and exercises of material science. Shanghai Jiaotong University Press, Shanghai (in Chinese)

    Google Scholar 

  • Chaless R J, et al (1972) AIP Conference, Proceeding M.M.M., (5): 1072

    Article  ADS  Google Scholar 

  • Chen Jufang, Sun Guangfei (2003) Chinese Invention Patent, ZL.02159664.6 (in Chinese)

    Google Scholar 

  • Clark A E (1973) High-field magnetization and coercivity of amorphous rare-earth-Fe2 alloys. Applied Physics Letters, 23: 642

    Article  ADS  Google Scholar 

  • Clark A E, Belson H S (1972) Huge magnetocrystalline anisotropy in cubic rare earth-Fe2 compounds. Physics Letters A, 42: 160

    Article  ADS  Google Scholar 

  • Ермоленко А С (1973) Письма в жотф, 17(9): 499

    Google Scholar 

  • Hadjipanayis G C, Hazelton R C, Lawless K R (1984) Cobalt-free permanent magnet materials based on iron-rare-earth alloys (invited). Journal of Applied Physics, 55(6): 2073

    Article  ADS  Google Scholar 

  • Hoffer G, Strnat K (1966) Magnetocrystalline anisotropy of YCo5 and Y2Co17. IEEE Transaction on Magnetics, MAG 7: 487

    Article  ADS  Google Scholar 

  • Hubbard W M, Adams E, Gilfrich J V (1960) Magnetic moments of alloys of gadolinium with some of the transition elements. Journal of Applied Physics, 31: S368

    Article  ADS  Google Scholar 

  • Jiang Zhongliang, Chen Xiuyun, Ma Chunlai, et al (2002) Chinese Invention Patent, ZL.02116678.1 (in Chinese)

    Google Scholar 

  • Koon N C, Das B N (1981) Magnetic properties of amorphous and crystallized (Fe0.82B0.18)0.9Tb0.05La0.05. Applied Physics Letters, 39: 840

    Article  ADS  Google Scholar 

  • Li Xiumei, Pan Wei, Wang Ping (1997) Chinese Invention Patent, ZL.971043337.X (in Chinese)

    Google Scholar 

  • Liu Jinfang, Pan Shuming, Luo Heilie, et al (1991) Thermal fluctuation field in NdFeB permanent magnets. Journal of Physics D: Applied Physics, 24: 385

    Article  ADS  Google Scholar 

  • Luo Yang (2002) The major trend of the NdFeB magnet market. Journal of Magnetic Materials and Devices, (1): 10–12 (in Chinese)

    Google Scholar 

  • Luo Yang (2003a) Technological progress of China’s rare earth permanent magnet industry. Journal of Magnetic Materials and Devices, 5: 33–35 (in Chinese)

    Google Scholar 

  • Luo Yang (2003b) The 21st century outlook of magnet industry in China. Corpus of 5th National Conference on Magnetic Materials and Devices, 2003: 50

    Google Scholar 

  • Luo Yang, Dong Xuemin (1997) Chinese Invention Patent, ZL.97115089.9 (in Chinese)

    Google Scholar 

  • Luo Yang, Dong Xuemin (1998) Chinese Invention Patent, ZL.98125214.1 (in Chinese)

    Google Scholar 

  • Luo Yang, Dong Xuemin (1999) Chinese Invention Patent, ZL.99102766.0 (in Chinese)

    Google Scholar 

  • Nesbbit E A, Willens R H, Sherwood R C, et al (1968) New permanent magnet materials. Applied Physics Letters, 12: 361

    Article  ADS  Google Scholar 

  • Nesbbit E A, et al (1959) Journal of Applied Physics, 30: 699

    Google Scholar 

  • Pan Shuming (1999) Chinese Invention Patent, ZL.99119732.1 (in Chinese)

    Google Scholar 

  • Pan Shuming (2001) Development and prospects of Nd-Fe-B magnets sintering technology in China and abroad. Corpus of 21st Century Symposium on NdFeB Magnets and Prospects in China, 2001: 2–4 (in Chinese)

    Google Scholar 

  • Pan Shuming (2011) 14th Symposium on Magnetism and Magnetic Materials, 2011: 147–148 (in Chinese)

    Google Scholar 

  • Pan Shuming, Chen Hong, Liu Denke, et al (1994) Neutron diffraction and Mössbauer effect study of the structure of DySixFe11−x CoN alloys. Journal of Applied Physics, 76: 6721, 6750

    ADS  Google Scholar 

  • Pan Shuming, Li Yiyu (2000) Study on application of new type revolving magnetic Needle. Proceeding of International Conference on Engineering and Technological Sciences, 2000: 631

    Google Scholar 

  • Pan Shuming, Ma Ruzhang, Ping Jueyun, et al (1991) Study on magnetic properties of Nd-Fe(Co, Al, Ga)-B alloy and site occupation of Co, Al, Ga atoms. Science China (Vol.A), 21(5): 543–545 (in Chinese)

    Google Scholar 

  • Pan Shuming, Ping Jueyun, Liu Jinfang, et al (2003) Nanometer grain microcosmic structure and coercivity mechanism model of NdFeB magnet with Nb. Journal of the Chinese Society of Rare Earths, 21(Supplement): 126

    Google Scholar 

  • Sagawa M, Fujimura S, Togawa N, et al (1984) New material for permanent magnets on a base of Nd and Fe (invited). Journal of Applied Physics, 55: 2083

    Article  ADS  Google Scholar 

  • Shen Baogen, Kong Linshu, Cao Lie, et al (1992) Chinese Invention Patent, ZL.92114793.7 (in Chinese)

    Google Scholar 

  • Strnat K, Hoffer G, Olson J, et al (1967) A family of new cobalt-base permanent magnet materials. Journal of Applied Physics, 38: 1001

    Article  ADS  Google Scholar 

  • Sun Zhifeng, Zhang Zhigang, Zhang Yiming, et al (2010) Determination of total rare earth contents in Dy-Fe alloy with EDTA volume method. Chinese Rare Earths, 31(1): 77

    Google Scholar 

  • Wang Xinlin (2001) Several recent development trends of metallic functional materials. Metallic Functional Materials, 8(1): 1–2 (in Chinese)

    Google Scholar 

  • Xiao Yaofu, Yue Ming, Wang Gongping, et al (2002) Spark plasma sintering technology and new type NdFeB magnets. In Proceedings of the 5th National Conference on Magnetics Materials and Equipments, Shanghai, 2002: 67–68 (in Chinese)

    Google Scholar 

  • Yan Mi, Wang Cheng, Zhao Chuanli (2006) Chinese Invention Patent, 200610025029.0 (in Chinese)

    Google Scholar 

  • Yang Yingchang (1989) Chinese Invention Patent, ZL.89101465.9 (in Chinese)

    Google Scholar 

  • Zhou Yongqia, Hu Xuying, Shen Panwen, et al (1997) Chinese Invention Patent, ZL.97104333.7 (in Chinese)

    Google Scholar 

  • Proceeding 7th Int’l Workshop on REPM, 1983

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Metallurgical Industry Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pan, S. (2013). Developments and Prospect of the Rare Earth Permanent-magnet Alloys. In: Rare Earth Permanent-Magnet Alloys’ High Temperature Phase Transformation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36388-7_5

Download citation

Publish with us

Policies and ethics