Skip to main content

Flocking Behavior via Leader’s Backstepping on Nonholonomic Robot Group

  • Chapter
  • First Online:
  • 2075 Accesses

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 452))

Abstract

This chapter aims to improve flocking control for a group of nonholonomic robots. It introduces a new flocking control algorithm with potential-based flocking as its foundation. By incorporating Leader’s Backstepping algorithm into the flocking strategy, an improved flocking performance is obtained, which leads the flock to the target point swiftly in a smoothed trajectory. Simulations in this chapter test and verify the effectiveness of the algorithm, in which key parameters’ influences on system performance are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Xiao BJ, Su HM, Zhao YL, Chen X (2013) Ant colony optimisation algorithm-based multi-robot exploration. Int J Model Ident Control 18(1):41–46

    Article  Google Scholar 

  2. Rigatos G (2008) Multi-robot motion planning using swarm intelligence. Int J Adv Rob Syst 5(2):139–144

    MathSciNet  Google Scholar 

  3. Zhang XY, Peng J, Hu HS, Lin K, Wang J (2012) Target attraction-based ant colony algorithm for mobile robots in rescue missions. Int J Model Ident Control 17(2):133–142

    Article  Google Scholar 

  4. Reynolds C (1987) Flocks, birds, and schools: a distributed behaviour model. Comput Graphics 21(4):25–34

    Article  Google Scholar 

  5. Chen SM (2007) Review of the modeling and control of swarm behaviours. Comput Eng Sci 29(7):102–105

    Google Scholar 

  6. Jadbabaie A, Lin J, Morse AS (2002) Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans Autom Control 48(6):988–1001

    Article  MathSciNet  Google Scholar 

  7. Tanner HG, Jadbabaie A, Pappas GJ (2007) Flocking in fixed and switching networks. IEEE Trans Autom Control 52(5):863–868

    Article  MathSciNet  Google Scholar 

  8. Olfati-Saber R, Murray RM (2004) Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans Autom Control 49(9):1520–1533

    Article  MathSciNet  Google Scholar 

  9. Ji M, Egerstedt M (2007) Distributed coordination control of multiagent systems while preserving connectedness. IEEE Trans Rob 23(4):693–703

    Article  Google Scholar 

  10. Li SQ, Shuai L, Cheng XY, Tang ZM, Yang JY (2005) A descriptive model of robot team and the dynamic evolution of robot team cooperation. Int J Adv Rob Syst 2(2):139–143

    Google Scholar 

  11. Zavlanos MM, Tanner HG, Jadbabaie A, Pappas GJ (2009) Hybrid control for connectivity preserving flocking. IEEE Trans Autom Control 54(12):2869–2875

    Article  MathSciNet  Google Scholar 

  12. Ekanayake SW, Pathirana PN (2010) Formations of robotic swarm: an artificial force based approach. Int J Adv Rob Syst 7(3):173–190

    Google Scholar 

  13. Dimarogonas D, Kyriakopoulos KJ (2007) On the rendezvous problem for multiple nonholonomic agents. IEEE Trans Autom Control 52(5):916–922

    Article  MathSciNet  Google Scholar 

  14. Cheng L, Yu H, Wu HY, Wang YJ (2008) A sequential flocking control system for multiple mobile robots. Control Theory Appl/Kongzhi Lilun yu Yingyong 25(6):1117–1120

    Google Scholar 

  15. Tran VH, Lee SG (2011) A stable formation control using approximation of translational and angular accelerations. Int J Adv Rob Syst 8(1):65–75

    Google Scholar 

  16. Saber RO (2006) Flocking for multi-agent dynamic systems: algorithms and theory. IEEE Trans Autom Control 51(3):401–420

    Article  MathSciNet  Google Scholar 

  17. Li W, Chen Z, Liu Z (2009) Formation control of multi-agent system based on potential function in complex environment. Int J Syst Control Commun 1(4):525–539

    Article  Google Scholar 

  18. Cheng L, Cao L, Wu HY (2011) Trajectory tracking control of nonholonomic mobile robots by Backstepping. In: Proceedings of 2011 international conference on modelling, identification and control, pp 134–139

    Google Scholar 

  19. Yang JH, Wu J, Hu YM (2002) Backstepping method and its applications to nonlinear robust control. Control Decis 17:641–647

    Google Scholar 

  20. Saberi A, Kokotovic PV, Sussmam HJ (1990) Global stabilization of partially linear composite systems. SIAM J Control Optim 28:1491–1503

    Google Scholar 

  21. Zohar I, Ailon A, Rabinovici R (2011) Mobile robot characterized by dynamic and kinematic equations and actuator dynamics: trajectory tracking and related application. Rob Auton Syst 59:343–353

    Article  Google Scholar 

  22. Bouteraa Y, Ghommam J, Derbel N (2011) Coordinated Backstepping control of multiple robot system of the leader-follower structure. In: International multi-conference on systems, signals and devices, pp 1–5

    Google Scholar 

  23. Aguiar AP, Hespanha JP (2007) Trajectory-tracking and path-following of underactuated autonomous vehicles with parametric modeling uncertainty. IEEE Trans Autom Control 52(8):1362–1379

    Article  MathSciNet  Google Scholar 

  24. Ghommam J, Saad M, Mnif, F (2010) Robust adaptive formation control of fully actuated marine vessels using local potential functions. In: 2010 IEEE international conference on robotics and automation anchorage convention district, Anchorage, Alaska, USA, pp 3001–3007

    Google Scholar 

  25. Chiu CH, Peng YF, Lin YW (2011) Intelligent Backstepping control for wheeled inverted pendulum. Expert Syst Appl 38:3364–3371

    Article  Google Scholar 

  26. Li XH, Xiao J, Cai ZJ (2005) Backstepping based multiple mobile robots formation control. In: IEEE/RSJ international conference on intelligent robots and systems, City University of New York, NY, USA, pp 887–892

    Google Scholar 

  27. Castro R, Álvarez J, Martínez J (2009) Robot formation control using Backstepping and sliding mode techniques. In: International conference on 6th electrical engineering, computing science and automatic control, Mexico City, Mexico, pp 1–6

    Google Scholar 

  28. Dong WJ (2010) Formation control of multiple wheeled mobile robots with uncertainty. In: 49th IEEE conference on decision and control, Hilton Atlanta Hotel, Atlanta, GA, USA, pp 4492–4497

    Google Scholar 

  29. Dong WJ (2011) Flocking of multiple mobile robots based on Backstepping. IEEE Trans Syst Man Cybern Part B Cybern 41(2):414–424

    Google Scholar 

  30. Chen YY, Tian YP (2008) A Backstepping design for directed formation control of three-coleader agents in the plane. Int J Robust Nonlinear Control 19:729–745

    Article  MathSciNet  Google Scholar 

  31. Do KD (2008) Formation tracking control of unicycle-type mobile robots With limited sensing ranges. IEEE Trans Control Syst Technol 16(3):527–538

    Article  Google Scholar 

  32. Li Q, Jiang ZP (2008) Formation tracking control of unicycle teams with collision avoidance. In: Proceedings of the 47th IEEE conference on decision and control, Cancun, Mexico, pp 496–501

    Google Scholar 

  33. Han TT, Ge SS (2011) Cooperative control design for circular flocking of underactuated hovercrafts. In: 50th IEEE conference on decision and control and European control conference (CDC-ECC), Orlando, FL, USA, pp 4891–4896

    Google Scholar 

  34. Cheng L, Xu WX, Wu HY, Zhu QM, Wang YJ, Nouri H (2012) A new procedure for multi-mode sequential flocking with application to multiple non-holonomic mobile robot motion control: mode description and integration principle. Int J Model Ident Control 15(1):39–47

    Article  Google Scholar 

  35. Cheng L, Zheng XJ, Wu HY, Zhu QM, Wang YJ, Nouri H (2012) A new procedure for multi-mode sequential flocking with application to multiple non-holonomic mobile robot motion control: implementation and analysis. Int J Model Ident Control 16(1):50–59

    Article  Google Scholar 

  36. Chaimowicz L (2002) Dynamic coodination of cooperative robots: a hybrid system approach. Doctoral Thesis, University of Minas Gerais, Collaborated with GRASP Laboratory at University of Pennsylvania

    Google Scholar 

  37. Tanner HG, Jadbabaie A, Pappas GJ (2003) Stable flocking of mobile agents, part I: fixed topology. In: Proceedings of IEEE conference on decision and control conference proceedings, Maui, HI, USA, pp 2010–2015

    Google Scholar 

  38. Yu H, Wang YJ, Cheng L (2005) Control of stable flocking motion of multiply-agent with a leader. J Huazhong Univ Sci Technol. Nat Sci Ed 33(8):56–58

    Google Scholar 

  39. Siegwart R, Nourbakhsh IR (2006) Introduction to autonomous mobile robots. LI Ren-hou Translation. Xi’an Jiaotong University Press, Xi’an

    Google Scholar 

  40. Min YY, Liu YG (2007) Barbalat Lemma and its applicatioin in analysis of system stability. J Shandong Univ 37(1):51–55

    MathSciNet  Google Scholar 

  41. http://www.grasp.upenn.edu/chaimo/muros_download.html

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation in China (Grant No. 60705035, 61075087, 61203331, 61005065), Key Program of Hubei Province Natural Science Foundation of China (Grant No. 2010CDA005), Key Program of Open Foundation of Hubei Province Key Laboratory of Systems Science in Metallurgical Process of China (Grant No. Z201102), Open Foundation of Henan Provincial Open Laboratory for Control Engineering Key Disciplines (Grant No. KG2011-01), Scientific Research Plan Key Project of Hubei Provincial Department of Education (Grant No. D20131105). This is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cheng, L. et al. (2014). Flocking Behavior via Leader’s Backstepping on Nonholonomic Robot Group. In: Liu, L., Zhu, Q., Cheng, L., Wang, Y., Zhao, D. (eds) Applied Methods and Techniques for Mechatronic Systems. Lecture Notes in Control and Information Sciences, vol 452. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36385-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36385-6_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36384-9

  • Online ISBN: 978-3-642-36385-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics