Skip to main content

Potential of Multiscale Texture Polarization Ratio of C-band SAR for Forest Biomass Estimation

  • Chapter
  • First Online:
Developments in Multidimensional Spatial Data Models

Abstract

Estimation of forest biomass is still a challenging task over large areas because of the saturation problem of remote sensing data as well as the environmental, topographic, and biophysical complexity of forest ecosystems. However, Synthetic Aperture Radar (SAR) is still one of the most attractive choices for the estimation of biomass or carbon storage capacity of vegetation due to its sensitivity to plant canopy structure, and new SAR sensors have attracted greater interest as they are able to provide data with varying spatial resolutions, polarizations, and incidence angles. This research investigates the potential of C-band dual polarization (HH and HV) SAR (Radarsat-2) imagery for forest biomass estimation using different combinations of raw backscattering (intensity), polarization texture parameters and texture polarization ratios. Several models have been developed between field biomass and SAR signatures using stepwise multiple regression. Results indicate that SAR intensity images (C-HV and C-HH) and the ratio of intensity data (C-HV/C-HH) have relatively low potential (r2 = 0.20) for biomass estimation. However, the SAR polarization (C-HV and C-HH) texture parameters were found to be effective and about 82 % (r2 = 0.82 and RMSE = 28.68 t/ha) of the variability in the field data (forest biomass up to 360 t/ha) was explained by the model. Further improvement of the estimation was achieved (r2 = 0.90 and RMSE = 21.55 t/ha) using the texture polarization ratio (C-HV/C-HH). The outcomes suggest that a clear improvement in forest biomass estimation can be obtained using the texture parameters of dual polarization C-band SAR and more improvement can be achieved using the ratio of texture parameters, as this combines the advantages of both texture and ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arevalo CBM, Volk TA, Bevilacqua E, Abrahamson L (2006) Development and validation of aboveground biomass estimations for four Salix clones in central New York. Biomass Bioenergy 31:1–12

    Article  Google Scholar 

  • Bortolot ZJ, Wynne RH (2005) Estimating forest biomass using small footprint LiDAR data: an individual tree-based approach that incorporates training data. J Photogrammetry Remote Sens 59:342–360

    Article  Google Scholar 

  • Brown S, Gillespie AJR, Lugo AE (1989) Biomass estimation methods for tropical forests with applications to forest inventory data. For Sci 35:881–902

    Google Scholar 

  • Castro KL, Sanchez-Azofeifa GA, Rivard B (2003) Monitoring secondary tropical forest using space-borne data: implications for Central America. Int J Remote Sens 24:1853–1894

    Article  Google Scholar 

  • Champion I, Dubois-Fernandez P, Guyon D, Cottrel M (2008) Radar image texture as a function of forest stand age. Int J Remote Sens 29:1795–1800

    Article  Google Scholar 

  • Chen D, Stow DA, Gong P (2004) Examining the effect of spatial resolution and texture window size on classification accuracy: an urban environment case. Int J Remote Sens 25:2177–2192

    Article  Google Scholar 

  • Dell’Acqua F, Gamba P (2003) Texture-based characterization of urban environments on satellite SAR images. IEEE Trans Geosci Remote Sens 41:153–159

    Article  Google Scholar 

  • Dobson MC, Ulaby FT, Le Toan T, Beaudoin A, Kasischke Kasischke ES, Christensen NC (1992) Dependence of radar backscatter on conifer forest biomass. IEEE Trans Geosci Remote Sens 30:412–415

    Article  Google Scholar 

  • Dobson MC, Ulaby FT, Pierce LE, Sharik TL, Bergen KM, Kellndorfer J, Kendra JR, Li E, Lin YC, Nashashibi A, Sarabandi KL, Siqueira P (1995) Estimation of forest biomass characteristics in northern Michigan with SIR-C/X-SAR data. IEEE Trans Geosci Remote Sens 33:877–894

    Google Scholar 

  • Foody GM, Green RM, Curran PJ, Lucas RM, Honzak M, Do Amaral I (1997) Observations on the relationship between SIR-C radar backscatter and the biomass of regenerating tropical forests. Int J Remote Sens 18:687–694

    Article  Google Scholar 

  • Foody GM, Boyd DS, Cutler MEJ (2003) Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions. Remote Sens Environ 85:463–474

    Article  Google Scholar 

  • Haralick RM, Shanmugam K, Dinstein I (1973) Texture features for image classification. IEEE Trans Syst, Man Cybern 3:610–621

    Article  Google Scholar 

  • Harrell PA, Kasischke ES, Bourgeau-Chavez LL, Haney EM, Christensen NL Jr (1997) Evaluation of approaches aboveground biomass in using SIR-C Data. Remote Sens Environ 59:223–233

    Article  Google Scholar 

  • Hyde P, Nelson R, Kimes D, Levine E (2007) Exploring LiDAR–RaDAR synergy—predicting aboveground biomass in a southwestern ponderosa pine forest using LiDAR, SAR and InSAR. Remote Sens Environ 106:28–38

    Article  Google Scholar 

  • Imhoff ML (1995) Radar backscatter and biomass saturation: ramification for global biomass inventory. IEEE Trans Geosci Remote Sens 33:511–518

    Article  Google Scholar 

  • Kasischke ES, Christensen NL, Bourgeau-Chavez LL (1995) Correlating radar backscatter with components of biomass in loblolly pine forests. IEEE Trans Geosci Remote Sens 33:643–659

    Article  Google Scholar 

  • Ketterings QM, Coe R, van Noordwijk M, Ambagau Y, Palm CA (2001) Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests. For Ecol Manage 146:199–209

    Article  Google Scholar 

  • Kuplich TM, Curran PJ, Atkinson PM (2005) Relating SAR image texture to the biomass of regenerating tropical forest. Int J Remote Sens 26:4829–4854

    Article  Google Scholar 

  • Le Toan T, Beaudoin A, Riom J, Guyon D (1992) Relating forest biomass to SAR data. IEEE Trans Geosci Remote Sens 30:403–411

    Article  Google Scholar 

  • Lu D (2006) The potential and challenge of remote sensing-based biomass estimation. Int J Remote Sens 27:1297–1328

    Article  Google Scholar 

  • Luckman A, Frery AC, Yanasse CCF, Groom GB (1997) Texture in airborne SAR imagery of tropical forest and its relationship to forest regeneration stage. Int J Remote Sens 18:1333–1349

    Article  Google Scholar 

  • Milne AK, Dong Y (2002) Vegetation mapping using JERS-1 SAR mosaic for northern Australia. Int J Remote Sens 23:1475–1486

    Article  Google Scholar 

  • Muukkonen P, Heiskanen J (2007) Biomass estimation over a large area based on standwise forest inventory data and ASTER and MODIS satellite data: A possibility to verify carbon inventories. Remote Sens Environ 107:617–622

    Article  Google Scholar 

  • Nelson R, Krabill W, Tonelli J (1988) Estimating forest biomass and volume using airborne laser data. Remote Sens Environ 24:247–267

    Article  Google Scholar 

  • Oliver CJ (1993) Optimum texture estimators for SAR clutter. J Phys D Appl Phys 26:1824–1835

    Article  Google Scholar 

  • Oliver C, Quegan S (2004) Understanding Synthetic Aperture Radar Images. SciTech Publication, Raleigh

    Google Scholar 

  • Overman JPM, Witte HJL, Saldarriaga JG (1994) Evaluation of regression models for above-ground biomass determination in Amazon Rainforest. J Trop Ecol 10:207–218

    Article  Google Scholar 

  • Ranson KJ, Sun G (1994) Mapping biomass of a northern forest using multifrequency SAR data. IEEE Trans Geosci Remote Sens 32:388–396

    Article  Google Scholar 

  • Rauste Y, Hame T, Pulliainen J, Heiska K, Hallikainen M (1994) Radar-based forest biomass estimation. Int J Remote Sens 15:2797–2808

    Article  Google Scholar 

  • Rignot E, Way J, Williams C, Viereck L (1994) Radar estimates of aboveground biomass in boreal forests of interior Alaska. IEEE Trans Geosci Remote Sens 32:1117–1124

    Article  Google Scholar 

  • Rosenqvist Å, Milne A, Lucas R, Imhoff M, Dobson C (2003) A review of remote sensing technology in support of the Kyoto protocol. Environ Sci Policy 6:441–455

    Article  Google Scholar 

  • Sarker MLR, Nichol JE (2011) Improved forest biomass estimates using ALOS AVNIR-2 texture indices. Remote Sens Environ 115:968–977

    Article  Google Scholar 

  • Sarker MLR, Nichol JE, Ahmad B, Busu I, Rahman AA (2012) Improvement of forest biomass estimation using texture measurements of two-date dual polarization PALSAR data. ISPRS J Photogrammetry Remote Sens 69:146–166

    Article  Google Scholar 

  • Shi J, Dozier J (1997) Mapping seasonal snow with SIR-C/X-SAR in mountainous areas. Remote Sens Environ 59:294–307

    Article  Google Scholar 

  • Thenkabail PS, Stucky N, Griscom BW, Ashton MS, Diels J, Meer BVD, Enclona E (2004) Biomass estimations and carbon stock calculations in the oil palm plantations of African derived savannas using IKONOS data. Int J Remote Sens 25:5447–5472

    Article  Google Scholar 

  • Unser M (1986) Sum and difference histogram for texture classification. IEEE Trans Pattern Anal Mach Intell PAMI-8:118–125

    Google Scholar 

  • Zheng D, Rademacher J, Chen J, Crow T, Bresee M, LE Moine J, Ryu S (2004) Estimating aboveground biomass using Landsat 7 ETM + data across a managed landscape in northern Wisconsin, USA. Remote Sens Environ 93:402–411

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Latifur Rahman Sarker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sarker, L.R., Nichol, J., Mubin, A. (2013). Potential of Multiscale Texture Polarization Ratio of C-band SAR for Forest Biomass Estimation. In: Abdul Rahman, A., Boguslawski, P., Gold, C., Said, M. (eds) Developments in Multidimensional Spatial Data Models. Lecture Notes in Geoinformation and Cartography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36379-5_5

Download citation

Publish with us

Policies and ethics