Skip to main content

Structure Preserving Optimal Control of Three-Dimensional Compass Gait

  • Chapter
Modeling, Simulation and Optimization of Bipedal Walking

Part of the book series: Cognitive Systems Monographs ((COSMOS,volume 18))

Abstract

The benefits of structure preserving algorithms for the numerical time-integration of mechanical systems, also called mechanical integrators, are widely accepted in forward dynamic simulations. However, in the field of motion planning and optimal control via direct methods, so far, these benefits have been less used. The dynamic optimisation method DMOC, does exploit the structure preserving properties of a variational integrator within an optimal control problem. This work considers the optimal control of a bipedal compass gait by modeling the double stance configuration as a transfer of contact constraints between the feet and the ground and develops a structure preserving simulation method for this context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chevallereau, C., Aoustin, Y.: Optimal reference trajectories for walking and running of a biped robot. Robotica 19, 557–569 (2001)

    Article  Google Scholar 

  2. Roussel, L., Canudas-de-Wit, C., Goswami, A.: Generation of energy optimal complete gait cycles for biped robots. In: Proc. IEEE Conf. on Robotics and Automation (1998)

    Google Scholar 

  3. Leyendecker, S., Ober-Blöbaum, S., Marsden, J.E., Ortiz, M.: Discrete Mechanics and Optimal Control for Constrained systems. Optimal Control Applications and Methods 31, 505–528 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bullo, F., Zefran, M.: On modeling and locomotion of hybrid mechanical systems with impacts. In: Proceedings of the 37th IEEE Conference on Decision & Control, Tampa, Florida, USA, pp. 2633–2638 (1998)

    Google Scholar 

  5. Pekarek, D., Marsden, J.E.: Variational collision integrators and optimal control. In: Proc. of the 18th International Symposium on Mathematical Theory of Networks and Systems (2008)

    Google Scholar 

  6. Junge, O., Marsden, J.E., Ober-Blöbaum, S.: Discrete mechanics and optimal control. In: Proceedings of the 16th IFAC World Congress (2005)

    Google Scholar 

  7. Ober-Blöbaum, S.: Discrete mechanics and optimal control. University of Paderborn (2008)

    Google Scholar 

  8. Ober-Blöbaum, S., Junge, O., Marsden, J.E.: Discrete mechanics and optimal control: an analysis. ESAIM: Control Optimisation and Calculus of Variations 17, 322–352 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gill, P.E., Murray, W., Saunders, M.A.: SNOPT: An SQP algorithm for large-scale constrained optimization. Numerical Analysis Report, Department of Mathematics. University of California, San Diego (1997)

    Google Scholar 

  10. Schittkowski, K.: Nonlinear programming codes. Lecture Notes in Economics and Mathematical Systems, vol. 183, pp. viii+242. Springer (1980)

    Google Scholar 

  11. Stoer, J., Bulirsch, R.: Introduction to numerical analysis, vol. 12, pp. xvi+744. Springer (2002)

    Google Scholar 

  12. Kraft, D.: On converting optimal control problems into nonlinear programming problems. Computational Mathematical Programming F15, 261–280 (1985)

    Google Scholar 

  13. Hicks, G.A., Ray, W.H.: Approximation methods for optimal control systems. Can. J. Chem. Engng. 49, 522–528 (1971)

    Article  Google Scholar 

  14. Mombaur, K.D., Longman, R.W., Bock, H.G., Schlöder, J.P.: Open-loop stable running. Robotica 23, 21–33 (2005)

    Article  Google Scholar 

  15. Deuflhard, P., Bornemann, F.: A modified Newton method for the solution of ill-conditioned systems of nonlinear equations with application to multiple shooting. Numer. Math. 22, 289–315 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bock, H.G., Plitt, K.J.: A multiple shooting algorithm for direct solution of optimal control problems. In: Proc. 9th IFAC World Congress (1984)

    Google Scholar 

  17. von Stryk, O.: Numerical solution of optimal control problems by direct collocation. Optimal Control – Calculus of Variations, Optimal Control Theory and Numerical Methods, Internat. Ser. Numer. Math. 111, 129–143 (1993)

    Google Scholar 

  18. Biegler, L.T.: Solution of dynamic optimization problems by successive quadratic programming and orthogonal collocation. Comput. Chem. Engng. 8, 243–248 (1984)

    Article  Google Scholar 

  19. Betts, J.: Survey of numerical methods for trajectory optimization. Journal of Guidance, Control, and Dynamics 2, 193–207 (1998)

    Article  Google Scholar 

  20. Binder, T., Blank, L., Bock, H.G., Bulirsch, R., Dahmen, W., Diehl, M., Kronseder, T., Marquardt, W., Schlöder, J.P., von Stryk, O.: Introduction to model based optimization of chemical processes on moving horizons. Online Optimization of Large Scale Systems: State of the Art 2, 295–340 (2001)

    Article  Google Scholar 

  21. Stern, A., Desbrun, M.: Discrete geometric mechanics for variational time integrators. In: Proc. of the SIGGRAPH 2006 ACM SIGGRAPH 2006 Courses, pp. 75–80 (2006)

    Google Scholar 

  22. Marsden, J.E., West, M.: Discrete mechanics and variational integrators. Acta Numerica 10, 357–514 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hairer, E., Lubich, C., Wanner, G.: Geometric numerical integration. Springer, Berlin (2006)

    MATH  Google Scholar 

  24. Leyendecker, S., Ober-Blöbaum, S.: A variational approach to multirate integration for constrained systems. In: Fisette, P., Samin, J.C. (eds.) Multibody Dynamics – Computational Methods and Applications. Springer (2012) (to appear)

    Google Scholar 

  25. Schiehlen, W.: Multibody systems handbook. Springer, Berlin (1990)

    Book  MATH  Google Scholar 

  26. Géradin, M., Cardona, A.: Flexible Multibody Dynamics. John Wiley & Sons, Berlin (2001)

    Google Scholar 

  27. Gonzalez, O.: Mechanical systems subject to holonomic constraints: differential-algebraic formulations and conservative integration. Physica D 132, 165–174 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wendlandt, J., Marsden, J.E.: Mechanical integrators derived from a discrete variational principle. Physica D 106, 223–246 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  29. Betsch, P.: The discrete null space method for the energy consistent integration of constrained mechanical systems. Part I: Holonomic constraints. Comput. Methods Appl. Mech. Engrg. 194, 5159–5190 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. Betsch, P., Leyendecker, S.: The discrete null space method for the energy consistent integration of constrained mechanical systems. Part II: Multibody dynamics. Int. J. Numer. Meth. Engng. 67, 499–552 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  31. Leyendecker, S., Marsden, J.E., Ortiz, M.: Variational integrators for constrained dynamical systems. ZAMM 88, 677–707 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  32. Fetecau, R.C., Marsden, J.E., Ortiz, M., West, M.: Nonsmooth Lagrangian Mechanics and Variational Collision Integrators. Siam J. Applied Dynamical Systems 2, 381–416 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  33. Pekarek, D.: Variational Methods for Control and Design of Bipedal Robot Models. California Institute of Technology (2010)

    Google Scholar 

  34. Antman, S.S.: Nonlinear Problems in Elasticity. Springer, Berlin (1995)

    Book  Google Scholar 

  35. Betsch, P., Steinmann, P.: Constrained integration of rigid body dynamics. Comput. Methods Appl. Mech. Engrg. 191, 467–488 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  36. Hurmuzlu, Y.: Dynamics of bipedal gait. Part I – objective functions and the contact event of a planar five-link biped. Part II – stability analysis of a planar five-link biped. ASME Journal of Applied Mechanics 60, 331–344 (1993)

    Article  Google Scholar 

  37. Duindam, V.: Port-based modeling and control for efficient bipedal walking robots. University of Twente (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sigrid Leyendecker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Leyendecker, S., Pekarek, D., Marsden, J.E. (2013). Structure Preserving Optimal Control of Three-Dimensional Compass Gait. In: Mombaur, K., Berns, K. (eds) Modeling, Simulation and Optimization of Bipedal Walking. Cognitive Systems Monographs, vol 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36368-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36368-9_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36367-2

  • Online ISBN: 978-3-642-36368-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics